基于决策树的交通拥堵成因分析

该博客通过决策树C4.5算法分析交通拥堵的原因,利用数据集中的路段特征如车流量、天气、时间等因素,计算特征贡献度,识别出影响交通的主要因素,并将结果保存到MySQL数据库以供展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

基于大量的不同环境因素下所对应的交通拥堵状态数据,运用决策树C4.5 算法归纳总结交通拥挤原因并排序。

 

一、数据获取:

1,分别获取拥堵数据集A和畅通数据。

2,从B中根据路段筛选出与A数量相等的畅通数据与A合并作为训练数据集C。3,对C中每条数据计算出30分钟内路段有无拥堵,30分钟内上一路段有无拥堵,30分钟内下一路段有无拥堵,30天内拥堵次数是否超过7次(常拥堵)。

 

具体特征如下:

  {

           'B_smallcar':'小车流量大余40','B_bigcar':'大车流量大于30',

            'pre_jam':'后方流量挤压', 'next_jam':'前方路段堵',

            'sunshine':'晴天', 'overcast':'阴天',

            'greasy':'雾天', 'rainy':'雨天',  'snowy':'雪天',

            'work':'工作日','festival':'节假日',

            'morning':'早高峰','evening':'晚高峰', #'Hiramine':'平峰',

            'recurrent':'30d内常堵',

            'if_jam':'本路段流量挤压'

            }数据格式为:

 

 

二、决策树模型构建

根据link_code分别构建决策树C4.5算法模型,并输出特征贡献度:

假设父节点有样本量N0,criterion为C0;

子节点1有样本量N1,criterion为C1;

子节点2有样本量N2,criterion为C2;

总样本个数为T。

特征贡献度:

gain=(N0C0N1C1N2C2)/T

三、输出拥堵因素

1,依照模型各特征贡献度获取每日每条拥堵信息实际特征(特征值为1的)的权重;

2,实际权重值标准化(特征权重和等于1);

3,周期汇总:

根据周期汇总各路段拥堵特征和权重,计算各特征均值作为该周期被本路段拥堵特征贡献度排名,根据特征贡献度排名,选择排名top特征,输出并保存到mysql表

后续可根据需要进行前端展示

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI仙人掌

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值