🧠 向所有学习者致敬!
“学习不是装满一桶水,而是点燃一把火。” —— 叶芝
我的博客主页: https://lizheng.blog.csdn.net
🌐 欢迎点击加入AI人工智能社区!
🚀 让我们一起努力,共创AI未来! 🚀
现在大家都在采用向量搜索来适应用户需求。顾名思义,向量搜索是通过一种称为向量的概念来查找和比较对象的技术。简单来说,它帮你发现对象之间的相似性,让你能在数据中找到复杂且符合上下文的关联。这项技术是AI搜索类应用的幕后功臣。
向量搜索是现代数据平台(如向量数据库)中的一项AI驱动的搜索功能,帮助用户构建更灵活的应用。你不再局限于基础的关键词搜索,而是能跨越任何数字媒体类型,找到语义相似的信息。
它的核心是众多机器学习系统之一,由各种规模和复杂度的大语言模型LLM驱动。这些模型可以通过数据库和传统平台获取,甚至被推送到边缘设备,在移动端运行。
本文将介绍向量搜索、相关术语、功能及其在现代数据库技术和人工智能AI创新中的应用。
什么是向量?
向量是一种数据结构,存储了一组数字。在这里,它指的是保存了数据集数字摘要的向量,可以看作是数据的指纹或摘要,正式名称叫嵌入。以下是一个简单的例子:
向量搜索的好处
向量搜索为数据库及其应用带来了一系列新能力。简而言之,它帮助用户在海量信息(即语料库)中找到更符合上下文的匹配结果。接近度的概念很重要——向量搜索通过统计方法将项目分组,展示它们的相似性或相关性。这不仅适用于文本,还适用于更多类型的数据,尽管我们的例子多为文本,以便与传统搜索系统对比。