RC滤波器的幅频特性和相频特性分析与MATLAB实现

1. 幅频特性

幅频特性描述了RC滤波器输出信号幅度随输入信号频率变化的关系。对于低通RC滤波器,其传递函数为:

H(j\omega) = \frac{1}{1 + j\omega RC}

幅值(增益)为: 

|H(j\omega)| = \frac{1}{\sqrt{1 + (\omega RC)^2}}

  • ω 是角频率 (rad/s)
  • R 是电阻值
  • C  是电容值

MATLAB代码 - 幅频特性

% 定义参数
R = 1000;      % 电阻值,单位:欧姆
C = 1e-6;      % 电容值,单位:法拉
RC = R * C;    % 时间常数

% 定义频率范围(对数刻度)
f = logspace(0, 5, 500);  % 频率从1Hz到100kHz
w = 2 * pi * f;           % 转换为角频率

% 计算幅频响应
H_mag = 1 ./ sqrt(1 + (w * RC).^2);  % 幅值

% 绘制幅频特性曲线
figure;
semilogx(f, 20*log10(H_mag), 'b', 'LineWidth', 2);  % 以分贝(dB)为单位
grid on;
title('RC低通滤波器幅频特性');
xlabel('频率 (Hz)');
ylabel('增益 (dB)');

解释

  • semilogx 使用了对数频率轴,便于观察滤波器的频率响应。
  • 增益以分贝表示,便于分析截止频率(-3dB点)。
  • 截止频率 f_c=\frac{1}{2 \pi R C},在此处约为159 Hz。

图1. RC低通滤波器幅频特性

2. 相频特性

相频特性描述了输出信号相对于输入信号的相位移随频率变化的关系。RC低通滤波器的相位为: \angle H(j\omega) = -\arctan(\omega RC)

相位角从0°逐渐减小到-90°。

MATLAB代码 - 相频特性

% 定义参数
R = 1000;      % 电阻值,单位:欧姆
C = 1e-6;      % 电容值,单位:法拉
RC = R * C;    % 时间常数

% 定义频率范围(对数刻度)
f = logspace(0, 5, 500);  % 频率从1Hz到100kHz
w = 2 * pi * f;           % 转换为角频率

% 计算相频响应
H_phase = -atan(w * RC) * 180 / pi;  % 转换为度数

% 绘制相频特性曲线
figure;
semilogx(f, H_phase, 'r', 'LineWidth', 2);
grid on;
title('RC低通滤波器相频特性');
xlabel('频率 (Hz)');
ylabel('相位 (度)');

解释

  • 相位从0°逐渐下降,在截止频率附近约为-45°,高频时趋近-90°。
  • atan 计算反正切,结果转换为度数以便直观理解。

图2. RC低通滤波器相频特性

3. 运行结果

  1. 幅频特性:曲线显示低频时增益接近0 dB,高频时逐渐衰减,截止频率附近下降到-3 dB。
  2. 相频特性:相位从0°开始,随频率增加逐渐减小,最终接近-90°。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值