Data Parallel 的那些事儿(梯度计算、同步 BN ......)

本文介绍了PyTorch中DataParallel的工作原理,以及如何使用它来解决显存不平衡和不足的问题。同时,对比了DataParallel与SyncBatchNorm在批归一化处理上的差异,解释了SyncBN如何实现跨GPU的同步批归一化,确保模型在多GPU环境中的收敛一致性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0、写在前面

本文是一个学习链接博客。网上已有许多参考文档,故不再重复。我从找到的学习链接中筛选出我认为写得清晰、通俗易懂的部分截取给大家,并加上了我学习过程中的笔记标注。来源已标注,感谢各位大佬博主!

1、Data Parallel 工作原理 & 梯度计算

pytorch多gpu DataParallel 及梯度累加解决显存不平衡和显存不足问题_gaoyelu的博客-CSDN博客

2、Data Parallel 暂时没有 PyTorch 官方的同步,但 DDP 有。

DataParallel下的Batch Normalization_44070509的博客-CSDN博客

3、Data Parallel 的 BN 层前向计算示意图

Pytorch多GPU的计算和Sync BatchNorm - 知乎

4、BN 的前向、反向传播及其计算公式

BN(Batch Normalization)与Multi-GPU BN - AI备忘录

5、SyncBN 的前向、反向传播及其计算公式

BN(Batch Normalization)与Multi-GPU BN - AI备忘录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值