一、背景
在天猫的个性化推荐场景中,无论是召回还是排序阶段,最重要的都是为用户兴趣建模。然而建模用户兴趣存在问题:一个用户可能对多种物品感兴趣。
现有的推荐算法采取过多种方法来对用户兴趣建模。基于协同过滤的方法用用户历史行为或隐性因子来表示用户兴趣,这种方法的局限性在于稀疏性和计算困难。深度学习方法通常将用户兴趣表示为一个低维度的embedding,然而这种方法中,embedding的维度可能会成为表达用户各种兴趣的瓶颈。DIN在表示用户兴趣时引入了attention,然而由于计算复杂性,这种方法只能用在排序阶段。
本文提出的MIND模型关注点在于在召回阶段为用户的兴趣多样性建模。我们设计了一个多兴趣抽取层,利用动态路由来将用户的历史聚合为用户的embedding表达。这一动态路由可以看做是一种soft clustering,将用户历史聚合成一些簇。这样对于一个用户,MIND就可以输出多个向量来表达用户的多种兴趣。
二、亮点
- 用多个向量来表示一个用户,这些向量编码用户兴趣的不同方面。
- 设计了基于胶囊网络动态路由的多兴趣抽取层,来聚类历史行为和提取不同的兴趣。
- 设计了label-aware attention机制,从而学习具有多个向量的用户表示。
三、模型具体结构
1. 问题形式化
推荐系统召回阶段的目标就是从一个巨大的物品池 I 中为每个用户 u ∈ U 召回一千级别的物品,并且每个物品都与用户兴趣相关。为达成这一目标,推荐系统生成的历史数据被收集下来来构建召回模型。其中的每个样本可以表示为一个三元组 ( I u , P u , F i ) (I_u, P_u, F_i) (Iu,Pu,Fi),其中 I u I_u Iu表示用户 u 交互过的物品, P u P_u Pu表示用户的基础画像(包括性别、年龄等)。 F i F_i Fi