Densenets论文学习总结

一些论文阅读总结,方便之后遗忘时迅速回顾

1 DenseNet

1.1 四大优点

  1. 缓解梯度消失

  2. 增强特征的传播

  3. 加强特征的reuse

  4. 减少了大量参数

 

1.2 Introduction

每一层都与loss funchtion直接相连

训练集较小时,有正则化效果

 

1.3 Related Work

主要受 Highway NetworksResnets启发。

相比Resnets,Densenets采用了concatenate,提高了效率。

相比Inception,Densenets更加简单和高效。

 

1.4 主要结构

  1. 不同于Resnets的bypass,summation的形式可能会阻碍信息流的传播,故Dense connectivity采用了concatenating。

  2. 采用了Composite function,即每一层l的操作函数H(l)包括了BN、Rulu,Conv三个操作

  3. 因为卷积过程中必须有下采样层(降低size),所以在denseblock之间加入了transition layers,在文章的实验中一个transition layer由一个1x1conv和一个2x2avg pool组成。

  4. 如果每一个H(l)都产生k个特征图,那么每一层的输入将是​ ,其中​ 代表此层的原始input。Densenet和其他网络结构不同的一个重点是,Densenet拥有非常狭窄紧致的层,Growth rate k相当于一个决定此层的global state的值。k值越大,即这一层contribute给global state的信息就越多。

  5. 因为concatenating的原因会造成通道仍然过高,使得出现Bottleneck的问题,所以在每个3x3卷积前加一个1x1卷积降低通道数

  6. 每个denseblock内作same conv,即卷积前作一个像素的zeropadding,使得3x3卷积后图片尺寸不变。

  7. Compression ,即假设每个denseblock输出的feature map的数量是m,则每个transition layer输出的feature map的数量为am,其中0<a<1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值