原文:https://docs.nvidia.com/aerial/#latest-release
NVIDIA AI Aerial™ 是一套用于设计、模拟和运营无线网络的加速计算平台、软件和服务。
Aerial 包含面向电信运营商、云服务提供商 (CSP) 和构建商用 5G 网络的企业的强化 RAN 软件库。
学术界和行业研究人员可以通过云端或本地设置访问 Aerial,开展 6G 高级无线和 AI/机器学习 (ML) 研究。
Aerial CUDA 加速 RAN
Aerial CUDA 加速 RAN 将 Aerial 的 5G 软件和 AI 框架与 NVIDIA 加速计算平台相结合,帮助电信运营商降低总体拥有成本 (TCO) 并实现基础设施盈利。
空中 Omniverse 数字孪生
空中 Omniverse 数字孪生是一个大规模仿真平台,能够构建物理上精确的无线环境。
空中 Omniverse 数字孪生利用 NVIDIA GPU 提供实现逼真无损检测 (NDT) 所需的最高性能。
这为您在设计、测试和部署无线网络方面带来全新的范式转变,从而加速无线网络新功能的演进。
Aerial AI Radio Frameworks
NVIDIA Aerial AI 无线电框架支持 RAN 中的训练和推理。
平台工具 pyAerial、NVIDIA Aerial™ 数据湖和 Sionna 涵盖了从人工智能和机器学习 (AI/ML) 算法探索、训练和推理,到 GPU 加速无线网络中的模拟和实时实现(例如 NVIDIA Aerial RAN CoLab Over-the-Air (ARC-OTA))的研究领域。
Sionna 6G 研究的开源库
Sionna™ 是一个 GPU 加速的链路级仿真开源库。它支持快速构建复杂通信系统架构的原型,并为机器学习在 6G 信号处理中的集成提供原生支持。
Sionna 是一个用于通信系统研究的 GPU 加速开源库。它具有可微分特性,并配备了用于无线电传播的闪电般快速的射线追踪器、多功能链路级模拟器以及系统级仿真功能。
主要特点
让 6G 研究更大众化
Sionna 实现了一系列经过精心测试的先进算法,可用于快速原型设计和端到端性能评估。这使您可以专注于更具影响力和可重复性的研究,而无需花费时间实现专业领域之外的组件。Sionna 是推进下一代通信系统(例如 6G)发展的重要工具。
一切皆可微分
Sionna 构建于强大的自动微分框架之上,该框架可以在整个通信系统中反向传播梯度。这使得基于梯度的优化和机器学习成为可能,尤其是在神经网络集成方面。
模块化和可扩展性
每个构建块都是一个独立的模块,您可以轻松测试、理解并根据需要进行修改。Sionna 提供高级 Python 应用程序编程接口 (API),简化了复杂通信系统的建模,同时确保了充分的适应性,以满足您的研究需求。
快速启动您的研究
Sionna 附带丰富的文档,包括许多教程,可帮助您快速入门。Sionna 开箱即用地支持 NVIDIA GPU,使其运行速度超快,非常适合通信领域的机器学习研究。
源码:https://github.com/nvlabs/sionna
文档:https://nvlabs.github.io/sionna/
白皮书:https://arxiv.org/abs/2203.11854
ARC-OTA
Aerial RAN CoLab – OTA (ARC-OTA) 是一个 GPU 加速的无线接入网络,旨在打造先进的无线创新沙盒。ARC-OTA 利用 NVIDIA 创新实验室集成并认证的分散式现成软硬件组件,首次为开发者提供全栈可编程性。它以稳定性、可靠性和性能为基础,支持快速原型设计、验证和基准测试,从而快速启动先进无线领域的创新。
NVIDIA ARC-OTA 是一个突破性的平台,它彻底革新了先进的无线开发,现已具备强大的 AI-RAN 功能。这个多功能的沙盒环境为开发者提供了前所未有的访问权限和灵活性,可用于无线技术的实验和创新。
主要特点
完整的源代码访问:开发人员可以深入了解平台的内部工作原理,实现彻底的定制和实验
快速验证:快速获得测试和基准测试结果,加速开发过程
O-RAN 合规性:基于虚拟化、分解和完全软件可编程性的原则构建,确保与 Open RAN 标准兼容
AI-RAN 集成:利用 NVIDIA 的 AI Aerial 硬件和软件解决方案增强功能
高级功能
GPU 加速 PHY:除了 RAN 中的 AI/ML 集成之外,所有 PHY 功能的完全内联加速
商业级基础:基于 NVIDIA Aerial CUDA 加速 RAN,为开发提供强大可靠的基础
云原生架构:旨在与现代云基础设施无缝集成,支持 5G 和 6G 网络堆栈。
开发人员福利
统一工作负载处理:ARC-OTA 高效管理 RAN 和 AI 工作负载,简化开发流程
持续创新:该平台的路线图包括 NVIDIA 认证的工具、蓝图和新兴的开发者扩展,以促进社区驱动的创新
激发创造力:凭借其 AI-RAN 功能,ARC-OTA 使开发人员能够突破先进无线技术的界限,鼓励探索和突破性创新。
通过将尖端的人工智能功能与灵活、开放的开发环境相结合,ARC-OTA 平台站在无线技术创新的前沿,使开发人员能够塑造 5G、6G 及未来技术。
产品描述
ARC-OTA 是一个支持 AI/ML 的端到端实时 OTA 网络测试平台,用于 AI-RAN 研究。如下图所示,ARC-OTA 是一个本地边缘云数据中心,构建于NVIDIA Aerial CUDA 加速 RAN 内联加速 L1 之上,并与 OpenAirInterface (OAI) 软件联盟 L2 和核心网络 (CN) 集成。Aerial CUDA 加速 RAN L1 在 Hopper GPU 上运行,而 OAI L2 在 Grace CPU 上运行。核心网络可以与 L1 和 L2 运行在同一台服务器上,也可以在单独的 x86 或 ARM 服务器上运行。NVIDIA NIC(在本例中为 BF3 数据处理单元 (DPU))使用 7.2x 接口连接到前传交换机。该交换机连接到一个或多个 O-RU,分别用于单小区或多小区操作。
所有 CUDA 源代码均适用于 L1,C 代码适用于 L2 和 CN。通过访问软件堆栈所有组件的源代码,研究人员可以通过定制空中接口数据和控制信道中的调制、编码和信号处理算法,将其创新变为现实。借助 L2 机器学习 (ML) 算法的源代码,可以在 MAC 和调度器中实现深度强化学习 (DRL)。
使用 ARC-OTA 测试平台,您可以在堆栈的所有层级测试机器学习 (ML) 算法。您可以将机器学习引入物理层、第二层,并在实时网络中进行基准测试。由于测试平台中使用真实的 O-RU,因此您的算法可以在真实无线信道环境中进行验证和基准测试,此外还可以处理物理 gNB 中存在的所有非理想因素,例如功率放大器非线性、射频增益和相位失配以及模拟电子设备中的其他缺陷。ARC-OTA 可以与实时信道模拟器和 UE 模拟器结合使用,使用传统的 3GPP 随机信道模型测试算法,此外还可以使用数字孪生(例如NVIDIA Aerial Omniverse 数字孪生)中通过射频射线追踪生成的站点特定模型。
ARC-OTA 的构建旨在推动 AI/ML 研究。具体而言,它支持捕获 OTA 数据以用于训练流程。数据收集使用NVIDIA Aerial Data Lake应用程序进行,该应用程序是NVIDIA Aerial AI 无线电框架 的一部分。Aerial Data Lake 作为应用程序在分布式单元 (DU) 上运行。它收集来自 O-RU 的上行链路 I/Q 样本,这些样本通过 7.2x 前传接口传送到 cuPHY 基带,并将其写入数据库。L1 和 L2 之间交换的 FAPI 元信息也会被收集并填充到数据库中,可用于索引和提取数据湖数据库中的数据。
虽然上行链路 I/Q 样本以及 L2 元信息对某些类型的算法开发很有用,但每种类型的 ML 或非 ML 算法设计都需要根据当前用例量身定制的数据集。这就是 pyAerial 可以提供帮助的地方。NVIDIA pyAerial 是 NVIDIA Aerial AI 无线电框架中的另一个工具。虽然 pyAerial 有多种用途,但其中一种应用是生成与 cuPHY PUSCH 管道中任何节点相对应的数据集。pyAerial 将 cuPHY CUDA 内核引入 Python。它是一个已配备 Python API 的 cuPHY L1 内核库。例如,研究人员可以直接使用 pyAerial 块组装完整的 PUSCH 管道。由于在 pyAerial API 下,这些块调用实时 cuPHY L1 中使用的相同 CUDA 代码,因此 pyAerial 管道与纯 CUDA cuPHY 管道位等效。例如,您可能希望访问 cuPHY 最小均方误差 (MMSE) 信道估计器的输入和输出样本。您可以简单地使用文件 I/O 操作,为 pyAerial 图中每个感兴趣的节点,对 pyAerial Python 代码进行检测。
下图展示了 ARC-OTA 的 E2E 架构和软件堆栈,包括 Aerial Data Lake 和 pyAerial 等附加服务。
如下图所示,可以使用多个 ARC-OTA 实例来组建一个多单元研究网络。每个网络节点都可以使用Aerial Data Lake 收集数据。分布式Aerial Data Lake 数据库可以进行时间对齐,并使用与数据库记录关联的时间戳将其合并到多单元训练数据库中。
O-RAN的拆分RAN概念将RAN分解为多个功能组件:O-RAN中央单元(O-CU)、O-RAN分布式单元(O-DUC)和O-RAN射频单元(O-RU),如下图所示。这些组件可以部署在不同的硬件和软件平台上,并可使用开放接口进行互连。
ARC-OTA conforms to an O-RAN blueprint as shown in the figure and table below. The figure highlights the multi-vendor aspect of O-RAN, with O-RU’s supplied from the NVIDIA O-RU ecosystem partners, Layer-1 is NVIDIA Aerial-CUDA Accelerated RAN, the 5G Core, O-CU and O-DU (high) are from OAI.
Aerial Data Lake
Aerial Data Lake 可与 NVIDIA pyAerial 库结合使用,为基于神经网络构建的 Layer-1 流水线生成训练数据。Aerial Data Lake数据库包含来自 7.2 倍前传接口的射频样本以及 Layer-2 元信息,用于支持数据库搜索和查询操作。pyAerial 流水线可以使用 Data Lake Python API 访问Aerial Data Lake 数据库中的样本,并将这些数据转换为流水线中任何函数的训练数据。图 2 展示了数据从 Data Lake 数据库导入 pyAerial 流水线的过程,以及如何使用标准 Python 文件 I/O 为软解映射器生成训练数据。
没有数据就没有人工智能。虽然 Aerial Omniverse 数字孪生 (AODT) 和 Sionna/SionnaRT 的合成数据生成能力是研究项目的关键要素,但获取来自实时系统的无线 (OTA) 波形数据也同样重要。这正是 Aerial 数据湖的作用所在。它是一个数据采集平台,支持从基于 Aerial CUDA 加速的虚拟无线接入网 (vRAN) 网络中采集 OTA 射频 (RF) 数据。Aerial 数据湖由运行在基站 (BS) 分布式单元 (DU) 上的数据采集应用程序 (app)、该应用程序采集样本的数据库以及用于访问数据库的应用程序编程接口 (API) 组成。
Aerial Data Lake 位于 Aerial L1 旁边,将对机器学习有用的数据复制到外部数据库中。
图 2 说明了数据从数据湖数据库进入 pyAerial 管道并使用标准 Python 文件 I/O 为软去映射器生成训练数据。
pyAerial
pyAerial 是一个包含物理层组件的 Python 库,可作为设计从仿真到实时运行的工作流程的一部分。它有助于神经接收器的端到端验证,并有助于弥合 TensorFlow/PyTorch 中的训练和仿真与无线测试平台的实时运行之间的差距。
概述
随着 6G 研究的蓬勃发展以及众多新技术的涌现,有一点显而易见:AI/ML 将在下一代 RAN 中占据重要地位。它将在实现网络基础设施的各个方面发挥关键作用,从无线单元、基带处理到网络核心,再到系统管理、编排和动态优化流程。GPU 硬件与编程框架对于实现软件定义的原生 AI 通信基础设施的愿景至关重要。
人工智能/机器学习在物理层的应用尤其成为热门研究课题。人们非常重视神经网络架构和优化策略,这些策略大多在模拟环境中进行。研究界和商业系统开发者的下一步是将应用于第一层的人工智能/机器学习应用于无线实时测试平台和运营商网络规模的系统。
pyAerial 应运而生。pyAerial 是一个包含物理层组件的 Python 库,可作为设计从仿真到实时运行的工作流程的一部分。它有助于对神经网络集成到 PHY 流水线进行端到端验证,并有助于弥合 TensorFlow/PyTorch 中的训练和仿真与无线测试平台的实时运行之间的差距。
pyAerial 库提供了一个 Python 可调用的位精度 GPU 加速库,适用于 NVIDIA cuBB 第 1 层 PDSCH 和 PUSCH 流水线中的所有信号处理 CUDA 内核。换句话说,pyAerial Python 类的行为方式与 cuBB 中使用的内核在数值上完全相同,因为 pyAerial 类使用与相应 cuBB 内核完全相同的 CUDA 代码:它是 CUDA 内核,但带有 Python API。
使用 pyAerial 库组件,可以用 Python 编写完整的 Layer-1 流水线。数据路径中可以包含用户代码、推理引擎(来自 NVIDIA TensorRT 或自定义 CUDA 代码),如图 1 下方所示。此快速原型设计和验证流程用于数据平面功能性能评估。这是在部署到实时无线 GPU 基站之前验证物理层设计的工作流程中的一个步骤。
pyAerial 还可以与 NVIDIA 数据收集平台 Aerial Data Lake 结合使用。Aerial Data Lake 数据库包含来自 7.2 倍速前传接口的射频样本以及 L2 元信息,用于支持数据库搜索和查询操作。pyAerial 管道可以使用 Data Lake Python API 访问 Aerial Data Lake 数据库中的样本,并将这些数据转换为管道中任何函数的训练数据。图 2 展示了数据从 Data Lake 数据库导入 pyAerial 管道的过程,以及如何使用标准 Python 文件 I/O 为软解映射器生成训练数据。
主要
pyAerial 具有以下主要特点:
特性 1:用于快速构建第 1 层管道原型的高效 Python
pyAerial 库组件是带有 Python 绑定的 CUDA 内核。Python 的高效环境允许快速组装 Python 中的信号处理流水线。Python 的所有分析和可视化功能均可用于性能表征、信号可视化和调试。
功能 2:在无线操作之前在物理层模拟机器学习
pyAerial 的目标是从 TensorFlow 或 PyTorch 中的模型训练和模拟转向实时无线操作,它提供了一种在 OTA 测试平台部署之前验证、评估和基准测试物理层的便捷方法。
特性 3:使用 CUDA 优化内核进行快速仿真
pyAerial 库组件的底层采用 CUDA 技术。在 GPU 上进行模拟速度很快。当您模拟编码链(例如 LDPC 解码器)时,优化的 CUDA 代码会实现这些计算量很大的函数。
特性4:为第1层上行或下行管道中的任意节点生成数据集
pyAerial 旨在与 NVIDIA 数据收集平台Aerial Data Lake结合使用。pyAerial 可以访问 Data Lake 数据库中的 RF 样本,并将这些样本转换为上行或下行管道中所有信号处理功能的训练数据。
特点5:位精确模拟
因为 pyAerial 是在 CUDA 上运行的 Python,所以您在 BLER 和其他表征指标中观察到的性能与实时无线系统的性能相同。
6G 开发者平台
NVIDIA 6G 开发者计划提供所有平台、文档和软件版本的早期访问权,以促进尖端 6G 研究。该计划包含一个软件定义且加速的无线接入网络 (RAN) 平台、与 RAN 软件互连的 AI 和 ML 框架,以及一个基于 NVIDIA Omniverse™ 的确定性光线追踪通道模型和照片级逼真场景创建和渲染组件的网络数字孪生。这些平台致力于推动 6G 研究的普及,为开发者和研究人员提供必要的工具、软件和硬件,以推动 6G 时代的快速创新。