写论文过程记录-评价指标-混淆矩阵-FAR-FRR-EER-ROC曲线-AUC值-Recall-Precision-PR曲线

这篇博客详细介绍了机器学习中常用的评价指标,包括混淆矩阵、误识率FAR、误拒率FRR、等错误率EER、ROC曲线、AUC值以及PR曲线。通过实例和公式解析,帮助读者理解这些指标的含义和关系,特别是指出在某些领域如人脸识别中,TPR(召回率)和Recall是相同的。建议遇到困惑时,基于混淆矩阵的基础定义进行公式推导,以便清晰理解各种指标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如果你在认识这些指标的过程中,被各种说法折腾的毫无头绪,一团乱麻,请看下面的详细解释,纯手工整理,非复制粘贴。

混淆矩阵

经典的混淆矩阵,各项含义如下:

FN:False Negative,被判定为负样本,但事实上是正样本。
FP:False Positive,被判定为正样本,但事实上是负样本。
TN:True Negative,被判定为负样本,事实上也是负样本。
TP:True Positive,被判定为正样本,事实上也是正样本。

在人脸鉴别,签字鉴别等需要鉴定身份的领域࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值