对偶单纯形法
1. 对偶单纯形法的由来
前面第四节课,我们讲解了单纯形法的本质(移动方向+移动步长),利用单纯形法去解决线性规划问题(LP)已经够了,但是为什么我们还创造一种对偶单纯形法来呢?
这是因为有些时候,原问题比较难求解,所以,我们尝试从另外一个角度去看待此问题,讲原问题进行转化,变成另外一种形式。
2. 如何“转化”
引入拉格朗日算子,例如我们给出如下的线性规划问题,
o b j = m i n ( x 2 + y 2 ) obj=min (x^2+y^2) obj=min(x2+