第五课程--------对偶单纯形法

本文介绍了对偶单纯形法的由来,通过转化原线性规划问题,引入拉格朗日算子来寻找问题的最优解。探讨了对偶问题的性质,包括弱对偶性、强对偶性和互补松弛性。
摘要由CSDN通过智能技术生成

对偶单纯形法

1. 对偶单纯形法的由来

前面第四节课,我们讲解了单纯形法的本质(移动方向+移动步长),利用单纯形法去解决线性规划问题(LP)已经够了,但是为什么我们还创造一种对偶单纯形法来呢?

这是因为有些时候,原问题比较难求解,所以,我们尝试从另外一个角度去看待此问题,讲原问题进行转化,变成另外一种形式。

2. 如何“转化”

引入拉格朗日算子,例如我们给出如下的线性规划问题,
o b j = m i n ( x 2 + y 2 ) obj=min (x^2+y^2) obj=min(x2+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yanxiaoyu110

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值