损失函数总结(十一):Huber Loss、SmoothL1Loss

本文介绍了深度学习中的两种损失函数:Huber Loss和SmoothL1Loss。Huber Loss结合了MSE和MAE的优点,当误差小时使用MSE,大时使用MAE。SmoothL1Loss是L1Loss的平滑版本,对异常值不敏感且梯度变化较小。文中提供了Pytorch的实现代码,并讨论了它们在实际应用中的优缺点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

损失函数总结(十一):Huber Loss、SmoothL1Loss

1 引言

在前面的文章中已经介绍了介绍了一系列损失函数 (L1LossMSELossBCELossCrossEntropyLossNLLLossCTCLossPoissonNLLLossGaussianNLLLossKLDivLossBCEWithLogitsLossMarginRankingLossHingeEmbeddingLossMultiMarginLossMultiLabelMarginLossSoftMarginLossMultiLabelSoftMarginLossTripletMarginLossTripletMarginWithDistanceLoss)。在这篇文章中,会接着上文提到的众多损失函数继续进行介绍,给大家带来更多不常见的损失函数的介绍。这里放一张损失函数的机理图:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

模型剧场工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值