pandas.DataFrame.ix 被deprecated啦!!!!

使用pandas.DataFrame.ix时,结果会弹出如下语句:

py:10: DeprecationWarning: 
.ix is deprecated. Please use
.loc for label based indexing or
.iloc for positional indexing

See the documentation here:
http://pandas.pydata.org/pandas-docs/stable/indexing.html#ix-indexer-is-deprecated
  # Remove the CWD from sys.path while we load stuff.

这说明,pandas.DataFrame.ix 这句指令已经被弃用了,这是因为当DataFrame的列名为数字而非字符时,.ix 这种混合定位方式无法识别某一列的列名与另一列的列号相同而产生的冲突,不会报错,而是默认为列名定位,可能不会返回希望得到的数据。
例如:

import pandas as pd
import numpy as np
 
data = pd.DataFrame(np.arange(16).reshape(4, 4), columns=['A', 'B', 'C', 'D'])
 
# 查看DataFrame数据
print(data)
 
# 定位到(2, 2)单元格
print(data.ix[0, 1])
 
# 添加一列,列名为1,数字非字符列名
data[1] = pd.Series(['a', 'a', 'a', 'a'])
# 查看DataFrame数据
print(data)
 
# 定位单元格
print(data.ix[0, 1])

得到结果为:

    A   B   C   D
0   0   1   2   3
1   4   5   6   7
2   8   9  10  11
3  12  13  14  15
1
    A   B   C   D  1
0   0   1   2   3  a
1   4   5   6   7  a
2   8   9  10  11  a
3  12  13  14  15  a
a

由此看出,第一个.ix指令取的数字是[0, 1]上的数字,而由于之后加了列名为"1"的一列,所以第二个.ix指令取到列名为"1"的列的0位上的字符串"a"。由此可见,用这种取值方法可能达不到预期效果。
所以,现在用.iloc 和 .loc 来代替 .ix 。

  • loc——通过行标签索引行数据
  • iloc——通过行号索引行数据

例如:

import pandas as pd
import numpy as np
 
data = pd.DataFrame(np.arange(16).reshape(4, 4), columns=['A', 'B', 'C', 'D'])
# 添加一列,列名为1,数字非字符列名
data[1] = pd.Series(['a', 'a', 'a', 'a'])
# 查看DataFrame数据
print(data)
 
# 定位单元格
print(data.iloc[0, 1])
print(data.loc[0, 1])

得到结果:

    A   B   C   D  1
0   0   1   2   3  a
1   4   5   6   7  a
2   8   9  10  11  a
3  12  13  14  15  a
1
a
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cofisher

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值