DeepSeek算力部署全攻略|本地+服务器双场景保姆级教程

本文将详细介绍如何在本地部署 DeepSeek 模型,并以图文的形式把操作步骤展示出来,确保即使是初学者也能轻松上手。

一、本地部署的适用场景

有私密数据需要处理,担心泄密:本地部署可以避免数据上传到云端,确保数据安全,  或者保密单位根本就不能上网的。

需要与本地工作交流结合:处理高频任务或复杂任务时,本地部署允许你对模型进行二次开发和定制, 可以提供更高的灵活性和效率。

瓶颈:本地部署需要较强的硬件支持,尤其是GPU需求。

二、部署过程

比较流行的是使用ollama 网址:https://ollama.com/

ollama 可以理解为替换前面的服务器端,在本地作为服务端,可以是别的平台)+ChatBox、Cherry Studio等 

步骤1:下载ollama 一步步安装即可

图片

安装成功后,打开命令行(Windows 用户按 Win + R,输入 cmd),输入ollama-v 能查看到ollama版本说明已安装ollama成功

图片

步骤2. 选择并安装模型

打开 Ollama guan网,点击右上角的 Models,选择deepseek-r1 

图片

并根据你的电脑性能选择合适的参数版本(如 1.5b、7b、14b 等), 使用满血版:DeepSeek R1 671B全量模型的文件体积高达720GB,对于绝大部分人而言,本地资源有限,很难达到这个配置。

图片

我选择7B,复制命令粘贴到命令窗口,粘贴并运行上述命令,模型将自动下载并安装。

图片

图片

安装成功后输入你的问题,模型会立即给出回答。

图片

其它命令  /?获取帮助   /bye 退出

图片

步骤3、使用客户端工具

本地部署好模型之后,在命令行操作还是不太方便,我们继续使用一些客户端工具来使用。cherry studio的下载:

cherry Studio的下载地址: https://cherry-ai.com/  安装后设置ollama为刚才部署的deepseek-r1:7b

图片

步骤4、修改models文件夹路径(可选)

ollama模型默认会下载到:C :\Users\你的用户名\.ollama目录下的models文件夹如果想修改模型的存放位置,做如下配置:

1:拷贝models文件夹到你指定的目录,比如我剪切到E:lollama下

2︰添加环境变量

右键“我的电脑”,选择“属性”,按如下方式配置:

图片

图片

3:重启ollama客户端生效

注意:修改完之后,需要重启ollama客户端,右键图标,选择退出,重新运行ollama

验证是否生效:重新运行ollama之后,重新打开命令行,输入命令ollama list查看:

图片

以上本地部署就好了

三,服务器部署(了解)

在企业中,想要私有化部署满血版DeepSeek-R1,即671B版本,需要有更好的硬件配置服务器可以是物理机,也可以是云服务器。

使用ollama提供的经过量化压缩的671B模型的大小是404GB,建议≥500 GB。

根据官方及社区的讨论,满血版R1(671B,且不做量化)需要2台8卡H100,或1台8卡 H20,或1台8卡H200来实现所有模型参数的内存卸载。如果按这种说法,只有预算至少在200万以上的企业级应用才能用上R1本地化部署。因此,UnslothAl社区推出的量化版本R1可以作为使用满血版R1前的"试用装"。——Unsloth:我们探索了如何让更多的本地用户运行它,并设法将DeepSeek的R1 671B参数模型量化为131GB,从原来的720GB减少了80%,同时非常实用。

在实际部署中,不同的动态量化+版本的效果不同:

图片

举例几种性价比配置如下:

  • Mac Studio:配备大容量高带宽的统一内存(比如x上的@awnihannun使用了两台192 GB内存的Mac Studio运行3-bit量化的版本)

  • 高内存带宽的服务器:比如HuggingFace上的alain401使用了配备了24×16GB DDR5 4800内存的服务器)

  • 云GPU服务器:配备2张或更多的80GB显存GPU(如英伟达的H100,租赁价格约2美元/小时/卡)

  • 在这些硬件上的运行速度可达到10+ token/秒。

部署流程与个人电脑部署7B的流程没有太大区别,都是以下几个步骤:

1.根据服务器的操作系统,下载对应版本的ollama客户端;

2.运行ollama,执行ollama命令运行671B版本模型;首次执行自动下载模型;

3.使用客户端工具/自己开发页面/代码调用,对接ollama的R1模型;

四,总结

通过以上步骤,你可以轻松在本地部署 DeepSeek 模型。无论是通过手动安装还是使用 Ollama,本地部署都能为你提供更高的灵活性和数据安全性。

阅读原文 关注公众号获取更多干货!

### DeepSeek 本地服务器部署指南 #### 准备工作 为了成功在本地服务器部署 DeepSeek,需确保服务器满足最低硬件需求并已安装必要的软件环境。建议配置如下: - CPU:至少8核心以上处理器 - RAM:最少64GB内存 - 存储空间:500GB SSD 或更大 - 操作系统:Windows Server 版本[^1] #### 安装依赖项 确认 Windows 系统已经更新至最新版本,并安装 .NET Framework 和 Visual C++ Redistributable Packages。 对于 Python 环境设置,推荐使用 Anaconda 发行版来管理虚拟环境以及所需库文件。通过命令提示符执行以下指令创建新的 conda 虚拟环境并激活它: ```bash conda create -n deepseek python=3.9 conda activate deepseek ``` #### 获取 DeepSeek 访问官方 GitHub 页面下载最新的发布包或将仓库克隆到本地机器上。如果网络条件允许的话,可以直接利用 Git 工具完成此操作: ```bash git clone https://github.com/deepseek-labs/DeepSeek.git cd DeepSeek ``` #### 配置模型参数 根据实际应用场景调整 `config.yaml` 文件中的各项设定值,特别是关于 GPU 使用情况的部分。这一步骤非常重要,因为不恰当的资源配置可能会导致性能下降甚至无法启动服务。 #### 启动 DeepSeek 服务 进入项目根目录下运行下列 PowerShell 命令以启动 DeepSeek 应用程序: ```powershell ollama run deepseek-r1:70b ``` 上述命令将会加载预训练好的 LLaMA-70B 模型实例并将其托管于指定端口之上等待客户端连接请求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序媛凡芽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值