深度学习推荐模型-DeepCrossing

深度学习推荐模型-DeepCrossing

本文参考链接,仅供个人学习:https://github.com/datawhalechina/team-learning-rs/tree/master/DeepRecommendationModel

相关学习书籍推荐:《深度学习推荐系统》王喆

一、Deep Crossing背景

2016年,微软提出Deep Crossing模型,旨在解决特征工程中特征组合的难题,降低人力特征组合的时间开销,通过模型自动学习特征的组合方式,也能达到不错的效果,且在各种任务中表现出较好的稳定性。与之前介绍的FNN、PNN不同的是,Deep Crossing并没有采用显式交叉特征的方式,而是利用残差网络结构挖掘特征间的关系。本文将对DeepCrossing从原理到实现细节进行详细分析。

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GoAI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值