深度学习推荐模型-DeepCrossing
本文参考链接,仅供个人学习:https://github.com/datawhalechina/team-learning-rs/tree/master/DeepRecommendationModel
相关学习书籍推荐:《深度学习推荐系统》王喆
一、Deep Crossing背景
2016年,微软提出Deep Crossing模型,旨在解决特征工程中特征组合的难题,降低人力特征组合的时间开销,通过模型自动学习特征的组合方式,也能达到不错的效果,且在各种任务中表现出较好的稳定性。与之前介绍的FNN、PNN不同的是,Deep Crossing并没有采用显式交叉特征的方式,而是利用残差网络结构挖掘特征间的关系。本文将对DeepCrossing从原理到实现细节进行详细分析。
<