Pytorch深度学习实战笔记

🌐实战配套视频:《PyTorch深度学习实践》完结合集

✔️实战笔记:

Learning_AI的博客_学习CV的研一小白_PyTorch学习笔记,

刘二大人:pytorch深度学习实践(代码详细笔记,适合零基础)

pytorch实战教学(一篇管够)_小星AI-CSDN博客_pytorch实战

Pytorch学习笔记--Bilibili刘二大人Pytorch教学代码汇总

➡️目录

线性模型

梯度下降

随机梯度下降:

反向传播

Pytorch实战--线性回归

Pytorch实战--逻辑回归

处理多维特征的输入

加载数据集

多分类问题

卷积神经网络

卷积神经网络(高级)

Residual net残差结构块

RNN


一、线性模型

import numpy as np
import matplotlib.pyplot as plt

x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]

def forward(x):
    return x * w

def loss(x, y):
    y_pred = forward(x)
    return (y_pred - y) * (y_pred - y)

w_list = []
mse_list = []
for w in np.arange(0.0, 4.1, 0.1):
    print('w=', w)
    l_sum = 0
    for x_val, y_val in zip(x_data, y_data):
        y_pred_val = forward(x_val)
        loss_val = loss(x_val, y_val)
        l_sum += loss_val
        print('\t', x_val, y_val, y_pred_val, loss_val)
    print('MSE=', l_sum / 3)
    w_list.append(w)
    mse_list.append(l_sum / 3)

plt.plot(w_list, mse_list)
plt.ylabel('Loss')
plt.xlabel('w')
plt.show()

运行截图如下:

梯度下降

     以模型 y=x*w为例,梯度下降算法就是一种训练参数 w 到最佳值的一种算法,w 每次变化的趋势由 a(学习率:一种超参数,由人手动设置调节),以及cost 的导数来决定,具体公式如下:  

注: 此时cost函数是指所有的损失函数之和

针对模型 y=x*w 的梯度下降算法的公式化简如下:

# 输入训练数据
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
 
# 设置初始参数
w = 1.0  # 初始权重
alpha = 0.005 #初始梯度下降法的学习率
 
# 定义计算y_hat的函数
def forward(x):
    return x * w
 
# 定义计算平均损失的函数
def cost(xs, ys):
    sum_cost = 0
    for x, y in zip(xs, ys):  # zip函数的功能是打包为元组列表
        y_pred = forward(x)
        sum_cost += (y_pred - y) ** 2
    return sum_cost / len(xs)
 
def gradient(xs, ys):
    grad = 0
    for x, y in zip(xs, ys):
        grad += 2 * x * (x * w - y)
    return grad / len(xs)
 
print('Predict (before training)', 4, forward(4))  # 计算训练前初始参数对应的y_hat值
for epoch in range(1000):
    cost_val = cost(x_data, y_data)   # 计算平均损失值
    grad_val = gradient(x_data, y_data) # 计算梯度值
    w -= alpha * grad_val # 更新权重w
    print('Epoch', epoch, 'w = ', w, 'loss = ', cost_val) # 输出当前迭代次数的权重值和平均损失值
 
print('Predict (after training)', 4, forward(4)) #计算训练权重w后,对应的y_hat值
 

随机梯度下降:

       随机梯度下降算法与梯度下降算法的不同之处在于,随机梯度下降算法不再计算损失函数之和的导数,而是随机选取任一随机函数计算导数,随机的决定 w 下次的变化趋势,具体公式变化如图:

# 输入训练数据
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
 
# 设置初始参数
w = 1.0  # 初始权重
alpha = 0.005 #初始梯度下降法的学习率
 
# 定义计算y_hat的函数
def forward(x):
    return x * w
 
# 定义计算单个样本损失的函数
def loss(xs, ys):
    y_pred = forward(x) # 计算预测值y_hat
    single_lost = (y_pred - ys) ** 2 # 计算误差
    return single_lost
 
def gradient(xs, ys):
    grad = 2 * x * (x * w - y)
    return grad
 
print('Predict (before training)', 4, forward(4))  # 计算训练前初始参数对应的y_hat值
for epoch in range(1000): # 迭代次数
    for x, y in zip(x_data, y_data): # 遍历数据
        grad_val = gradient(x, y)    # 计算当前数据的梯度值
        w -= alpha * grad_val        # 更新权重w
        print("\tgrad: ", x, y, grad_val)
        los = loss(x, y)  # 计算当前数据的损失值
    print('progress: ', epoch, 'w = ', w, 'loss = ', los)
 
print('Predict (after training)', 4, forward(4)) # 计算训练权重w后,对应的y_hat值

反向传播

import torch

x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]

w = torch.Tensor([1.0])
w.requires_grad = True  # 需要计算梯度

def forward(x):
    return x * w  # tensor
    
def loss(x, y):
    y_pred = forward(x)
    return (y_pred - y) ** 2

print('predict (before training)', 4, forward(4).item())
for epoch in range(100):
    for x, y in zip(x_data, y_data):
        l = loss(x, y) # 前向,计算loss
        l.backward() # 做完后计算图会释放
        print('\tgrad:', x, y, w.grad.item())  # item取值,要是张量计算图一直累积
        w.data -= 0.01 * w.grad.data  # 不取data会是TENSOR有计算图

        w.grad.data.zero_()  # 计算出来的梯度不清零会累加
    print("progress:", epoch, l.item())
print('predict (after training)', 4, forward(4).item())

二、Pytorch实战--线性回归

# 1、算预测值
# 2、算loss
# 3、梯度设为0,并反向传播
# 3、梯度更新


import torch

x_data = torch.Tensor([[1.0], [2.0], [3.0]])
y_data = torch.Tensor([[2.0], [4.0], [6.0]])


# 构造线性模型,后面都是使用这样的模板
# 至少实现两个函数,__init__构造函数和forward()前馈函数
# backward()会根据我们的计算图自动构建
# 可以继承Functions来构建自己的计算块
class LinerModel(torch.nn.Module):
    def __init__(self):
        # 调用父类的构造
        super(LinerModel, self).__init__()
        # 构造Linear这个对象,对输入数据做线性变换
        # class torch.nn.Linear(in_features, out_features, bias=True)
        # in_features - 每个输入样本的大小
        # out_features - 每个输出样本的大小
        # bias - 若设置为False,这层不会学习偏置。默认值:True
        self.linear = torch.nn.Linear(1, 1)

    def forward(self, x):
        y_pred = self.linear(x)
        return y_pred


model = LinerModel() # 实例化,可调用
# 定义MSE(均方差)损失函数,size_average=False不求均值
criterion = torch.nn.MSELoss(size_average=False)
# optim优化模块的SGD,第一个参数就是传递权重,model.parameters()model的所有权重
# 优化器对象
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

for epoch in range(100):
    y_pred = model(x_data)
    loss = criterion(y_pred, y_data)
    # loss为一个对象,loss不会产生计算图,但会自动调用__str__()所以不会出错
    print(epoch, loss)
    # 梯度归零
    optimizer.zero_grad()
    # 反向传播
    loss.backward()
    # 根据梯度和预先设置的学习率进行更新(权重更新)
    optimizer.step()

# 打印权重和偏置值,weight是一个值但是一个矩阵
print('w=', model.linear.weight.item())
print('b=', model.linear.bias.item())

# 测试
x_test = torch.Tensor([4.0])
y_test = model(x_test)
print('y_pred=', y_test.data)

结果图:

三、Pytorch实战--逻辑回归

import torch
import torch.nn.functional as F
import numpy as np
import matplotlib.pyplot as plt
 
x_data = torch.Tensor([[1.0], [2.0], [3.0]])
y_data = torch.Tensor([[0], [0], [1]])
 
##
class LogisticRegressionModel(torch.nn.Module):
    def __init__(self): #构造函数
        super(LogisticRegressionModel, self).__init__()
        self.linear = torch.nn.Linear(1, 1) #线性层
 
    def forward(self, x):
        y_pred = F.sigmoid(self.linear(x)) #激活函数
        return y_pred
 
model = LogisticRegressionModel()
 
##
criterion = torch.nn.BCELoss(size_average = False) #计算损失
optimizer = torch.optim.SGD(model.parameters(), lr = 0.01) #优化器
 
##
for epoch in range(1000):
    y_pred = model(x_data)
    loss = criterion(y_pred, y_data)
    print(epoch, loss.item())
 
    optimizer.zero_grad() # 梯度置0
    loss.backward() # 计算梯度,反向传播
    optimizer.step() # 更新参数
 
##
x = np.linspace(0, 10, 200)
x_t = torch.Tensor(x).view((200, 1))
y_t = model(x_t)
y = y_t.data.numpy()
plt.plot(x, y)
plt.plot([0, 10], [0.5, 0.5], c='r')
plt.xlabel('Hours')
plt.ylabel('Probability of Pass')
plt.grid()
plt.show()

处理多维特征的输入

import numpy as np
import torch

xy = np.loadtxt('diabetes.csv.gz', delimiter=',', dtype=np.float32)
x_data = torch.from_numpy(xy[:, :-1])
# [-1]加中括号拿出来是矩阵,不加是向量
y_data = torch.from_numpy(xy[:, [-1]])


class Model(torch.nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.linear1 = torch.nn.Linear(8, 6)
        self.linear2 = torch.nn.Linear(6, 4)
        self.linear3 = torch.nn.Linear(4, 1)
        # 这是nn下的Sigmoid是一个模块没有参数,在function调用的Sigmoid是函数
        self.sigmoid = torch.nn.Sigmoid()

    def forward(self, x):
        x = self.sigmoid(self.linear1(x))
        x = self.sigmoid(self.linear2(x))
        x = self.sigmoid(self.linear3(x))
        return x


model = Model()
criterion = torch.nn.BCELoss(size_average=True)  # 损失函数
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)  # 优化函数,随机梯度递减

for epoch in range(100):
    # 前馈
    y_pred = model(x_data)
    loss = criterion(y_pred, y_data)
    print(epoch, loss.item())

    # 反馈
    optimizer.zero_grad()
    loss.backward()

    # 更新
    optimizer.step()

加载数据集

import numpy as np
import torch
from torch.utils.data import Dataset  # Dataset是一个抽象类,只能被继承,不能实例化
from torch.utils.data import DataLoader  # 可以直接实例化

'''
四步:准备数据集-设计模型-构建损失函数和优化器-周期训练
'''


class DiabetesDataset(Dataset):
    def __init__(self, filepath):
        xy = np.loadtxt(filepath, delimiter=',', dtype=np.float32)
        self.len = xy.shape[0]
        self.x_data = torch.from_numpy(xy[:, :-1])
        self.y_data = torch.from_numpy(xy[:, [-1]])

    def __getitem__(self, index):  # 实例化对象后,该类能支持下标操作,通过index拿出数据
        return self.x_data[index], self.y_data[index]

    def __len__(self):
        return self.len


dataset = DiabetesDataset('diabetes.csv.gz')
# dataset数据集,batch_size小批量的容量,shuffle是否要打乱,num_workers要几个并行进程来读
# DataLoader的实例化对象不能直接使用,因为windows和linux的多线程运行不一样,所以一般要放在函数里运行
train_loader = DataLoader(dataset=dataset, batch_size=32, shuffle=True, num_workers=2)


class Model(torch.nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.linear1 = torch.nn.Linear(8, 6)
        self.linear2 = torch.nn.Linear(6, 4)
        self.linear3 = torch.nn.Linear(4, 1)
        # 这是nn下的Sigmoid是一个模块没有参数,在function调用的Sigmoid是函数
        self.sigmoid = torch.nn.Sigmoid()

    def forward(self, x):
        x = self.sigmoid(self.linear1(x))
        x = self.sigmoid(self.linear2(x))
        x = self.sigmoid(self.linear3(x))
        return x


model = Model()
criterion = torch.nn.BCELoss(size_average=True)  # 损失函数
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)  # 优化函数,随机梯度递减

# 变成嵌套循环,实现Mini-Batch
for epoch in range(100):
    # 从数据集0开始迭代
    # 可以简写为for i, (inputs, labels) in enumerate(train_loader, 0):
    for i, data in enumerate(train_loader, 0):
        # 准备数据
        inputs, labels = data
        # 前馈
        y_pred = model(inputs)
        loss = criterion(y_pred, labels)
        print(epoch, i, loss.item())
        # 反馈
        optimizer.zero_grad()
        loss.backward()
        # 更新
        optimizer.step()

多分类问题

import torch
from torchvision import transforms  # 对图像进行处理的工具
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F  # 使用激活函数relu()的包
import torch.optim as optim  # 优化器的包

batch_size = 64
# 对图像进行预处理,将图像转换为
transform = transforms.Compose([
    # 将原始图像PIL变为张量tensor(H*W*C),再将[0,255]区间转换为[0.1,1.0]
    transforms.ToTensor(),
    # 使用均值和标准差对张量图像进行归一化
    transforms.Normalize((0.1307,), (0.3081,))
])

train_dataset = datasets.MNIST(root='dataset/mnist/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)

test_dataset = datasets.MNIST(root='dataset/mnist/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)


class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.l1 = torch.nn.Linear(784, 512)
        self.l2 = torch.nn.Linear(512, 256)
        self.l3 = torch.nn.Linear(256, 128)
        self.l4 = torch.nn.Linear(128, 64)
        self.l5 = torch.nn.Linear(64, 10)

    def forward(self, x):
        # 改变形状,相当于numpy的reshape
        # view中一个参数定为-1,代表动态调整这个维度上的元素个数,以保证元素的总数不变。
        x = x.view(-1, 784)
        x = F.relu(self.l1(x))
        x = F.relu(self.l2(x))
        x = F.relu(self.l3(x))
        x = F.relu(self.l4(x))
        return self.l5(x)


model = Net()
# 交叉熵损失函数
criterion = torch.nn.CrossEntropyLoss()
# model.parameters()直接使用的模型的所有参数
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)  # momentum动量


def train(epoch):
    running_loss = 0.0
    # 返回了数据下标和数据
    for batch_idx, data in enumerate(train_loader, 0):
        # 送入两个张量,一个张量是64个图像的特征,一个张量图片对应的数字
        inputs, target = data
        # 梯度归零
        optimizer.zero_grad()

        # forward+backward+update
        outputs = model(inputs)
        # 计算损失,用的交叉熵损失函数
        loss = criterion(outputs, target)
        # 反馈
        loss.backward()
        # 随机梯度下降更新
        optimizer.step()

        # 每300次输出一次
        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d,%5d] loss:%.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0.0


def test():
    correct = 0
    total = 0
    # 不会计算梯度
    with torch.no_grad():
        for data in test_loader:  # 拿数据
            images, labels = data
            outputs = model(images)  # 预测
            # outputs.data是一个矩阵,每一行10个量,最大值的下标就是预测值
            _, predicted = torch.max(outputs.data, dim=1)  # 沿着第一维度,找最大值的下标,返回最大值和下标
            total += labels.size(0)  # labels.size(0)=64 每个都是64个元素,就可以计算总的元素
            # (predicted == labels).sum()这个是张量,而加了item()变为一个数字,即相等的数量
            correct += (predicted == labels).sum().item()
    print('Accuracy on test set:%d %%' % (100 * correct / total))  # 正确的数量除以总数


if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()

卷积神经网络

简单的构建

import torch

# 输入的通道就是上图的n,输出的通道就是上图的m
in_channels, out_channels = 5, 10
width, height = 100, 100  # 图像的大小
kernel_size = 3  # 卷积盒的大小
batch_size = 1  # 批量大小

# 随机生成了一个小批量=1的5*100*100的张量
input = torch.randn(batch_size, in_channels, width, height)

# Conv2d对由多个输入平面组成的输入信号进行二维卷积
conv_layer = torch.nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size)

output = conv_layer(input)

# print(input)
print(input.shape)
print(output.shape)
print(conv_layer.weight.shape)

运行结果:

torch.Size([1, 5, 100, 100])
torch.Size([1, 10, 98, 98])
torch.Size([10, 5, 3, 3])

padding

import torch

input = [3, 4, 6, 5, 7,
         2, 4, 6, 8, 2,
         1, 6, 7, 8, 4,
         9, 7, 4, 6, 2,
         3, 7, 5, 4, 1]

input = torch.Tensor(input).view(1, 1, 5, 5)

# bias=False不加偏置量
conv_layer = torch.nn.Conv2d(1, 1, kernel_size=3, padding=1, bias=False)

kernel = torch.Tensor([1, 2, 3, 4, 5, 6, 7, 8, 9]).view(1, 1, 3, 3)
# 把kernel赋值给卷积层权重,做初始化
conv_layer.weight.data = kernel.data

output = conv_layer(input)
print(output)

运行结果:

tensor([[[[ 91., 168., 224., 215., 127.],
          [114., 211., 295., 262., 149.],
          [192., 259., 282., 214., 122.],
          [194., 251., 253., 169.,  86.],
          [ 96., 112., 110.,  68.,  31.]]]], grad_fn=<ThnnConv2DBackward>)

Layer-stride步长

import torch

input = [3, 4, 6, 5, 7,
         2, 4, 6, 8, 2,
         1, 6, 7, 8, 4,
         9, 7, 4, 6, 2,
         3, 7, 5, 4, 1]

input = torch.Tensor(input).view(1, 1, 5, 5)

# bias=False不加偏置量
conv_layer = torch.nn.Conv2d(1, 1, kernel_size=3, stride=2, bias=False)

kernel = torch.Tensor([1, 2, 3, 4, 5, 6, 7, 8, 9]).view(1, 1, 3, 3)
# 把kernel赋值给卷积层权重,做初始化
conv_layer.weight.data = kernel.data

output = conv_layer(input)
print(output)

运行结果:

tensor([[[[211., 262.],
          [251., 169.]]]], grad_fn=<ThnnConv2DBackward>)

Max Pooling Layer最大池化层

最大池化层是没有权重的

import torch

input = [3, 9, 6, 5,
         2, 4, 6, 8,
         1, 6, 2, 1,
         3, 7, 4, 6]

input = torch.Tensor(input).view(1, 1, 4, 4)

maxpooling_layer = torch.nn.MaxPool2d(kernel_size=2)

output = maxpooling_layer(input)
print(output)

运行结果:

tensor([[[[9., 8.],
          [7., 6.]]]])
import torch
from torchvision import transforms  # 对图像进行处理的工具
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F  # 使用激活函数relu()的包
import torch.optim as optim  # 优化器的包

batch_size = 64
# 对图像进行预处理,将图像转换为
transform = transforms.Compose([
    # 将原始图像PIL变为张量tensor(H*W*C),再将[0,255]区间转换为[0.1,1.0]
    transforms.ToTensor(),
    # 使用均值和标准差对张量图像进行归一化
    transforms.Normalize((0.1307,), (0.3081,))
])

train_dataset = datasets.MNIST(root='dataset/mnist/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)

test_dataset = datasets.MNIST(root='dataset/mnist/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)

class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        # 定义两个卷积层
        self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
        # 定义一个池化层
        self.pooling = torch.nn.MaxPool2d(2)
        # 定义一个全连接的线性层
        self.fc = torch.nn.Linear(320, 10)

    def forward(self, x):
        # Flatten data from (n, 1, 28, 28) to (n, 784)
        # x.size(0)就是取的n
        batch_size = x.size(0)
        # 用relu做非线性激活
        # 先做卷积再做池化再做relu
        x = F.relu(self.pooling(self.conv1(x)))
        x = F.relu(self.pooling(self.conv2(x)))
        # 做view把数据变为做全连接网络所需要的输入
        x = x.view(batch_size, -1)
        return self.fc(x)
        # 因为最后一层要做交叉熵损失,所以最后一层不做激活

model = Net()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
# 交叉熵损失函数
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)  # momentum动量


def train(epoch):
    running_loss = 0.0
    # 返回了数据下标和数据
    for batch_idx, data in enumerate(train_loader, 0):
        # 送入两个张量,一个张量是64个图像的特征,一个张量图片对应的数字
        inputs, target = data
        # 把输入输出迁入GPU
        inputs, target = inputs.to(device), target.to(device)
        # 梯度归零
        optimizer.zero_grad()

        # forward+backward+update
        outputs = model(inputs)
        # 计算损失,用的交叉熵损失函数
        loss = criterion(outputs, target)
        # 反馈
        loss.backward()
        # 随机梯度下降更新
        optimizer.step()

        # 每300次输出一次
        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d,%5d] loss:%.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0.0


def test():
    correct = 0
    total = 0
    # 不会计算梯度
    with torch.no_grad():
        for data in test_loader:  # 拿数据
            images, labels = data
            images, labels = images.to(device), labels.to(device)
            outputs = model(images)  # 预测
            # outputs.data是一个矩阵,每一行10个量,最大值的下标就是预测值
            _, predicted = torch.max(outputs.data, dim=1)  # 沿着第一维度,找最大值的下标,返回最大值和下标
            total += labels.size(0)  # labels.size(0)=64 每个都是64个元素,就可以计算总的元素
            # (predicted == labels).sum()这个是张量,而加了item()变为一个数字,即相等的数量
            correct += (predicted == labels).sum().item()
    print('Accuracy on test set:%d %%' % (100 * correct / total))  # 正确的数量除以总数


if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()

卷积神经网络(高级)

import torch
import torch.nn as nn
from torchvision import transforms  # 对图像进行处理的工具
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F  # 使用激活函数relu()的包
import torch.optim as optim  # 优化器的包

batch_size = 64
# 对图像进行预处理,将图像转换为
transform = transforms.Compose([
    # 将原始图像PIL变为张量tensor(H*W*C),再将[0,255]区间转换为[0.1,1.0]
    transforms.ToTensor(),
    # 使用均值和标准差对张量图像进行归一化
    transforms.Normalize((0.1307,), (0.3081,))
])

train_dataset = datasets.MNIST(root='dataset/mnist/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)

test_dataset = datasets.MNIST(root='dataset/mnist/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)


class InceptionA(nn.Module):
    def __init__(self, in_channels):
        super(InceptionA, self).__init__()
        # 第一个通道,输入通道为in_channels,输出通道为16,卷积盒的大小为1*1的卷积层
        self.branch1x1 = nn.Conv2d(in_channels, 16, kernel_size=1)

        # 第二个通道
        self.branch5x5_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
        self.branch5x5_2 = nn.Conv2d(16, 24, kernel_size=5, padding=2)

        # 第三个通道
        self.branch3x3_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
        self.branch3x3_2 = nn.Conv2d(16, 24, kernel_size=3, padding=1)
        self.branch3x3_3 = nn.Conv2d(24, 24, kernel_size=3, padding=1)

        # 第四个通道
        self.branch_pool = nn.Conv2d(in_channels, 24, kernel_size=1)

    def forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch5x5 = self.branch5x5_1(x)
        branch5x5 = self.branch5x5_2(branch5x5)

        branch3x3 = self.branch3x3_1(x)
        branch3x3 = self.branch3x3_2(branch3x3)
        branch3x3 = self.branch3x3_3(branch3x3)

        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)

        # 拼接
        outputs = [branch1x1, branch5x5, branch3x3, branch_pool]
        return torch.cat(outputs, dim=1)


class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(88, 20, kernel_size=5)

        self.incep1 = InceptionA(in_channels=10)
        self.incep2 = InceptionA(in_channels=20)

        self.mp = nn.MaxPool2d(2)
        self.fc = nn.Linear(1408, 10)

    def forward(self, x):
        in_size = x.size(0)
        x = F.relu(self.mp(self.conv1(x)))
        x = self.incep1(x)
        x = F.relu(self.mp(self.conv2(x)))
        x = self.incep2(x)
        x = x.view(in_size, -1)
        x = self.fc(x)
        return x


model = Net()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
# 交叉熵损失函数
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)  # momentum动量


def train(epoch):
    running_loss = 0.0
    # 返回了数据下标和数据
    for batch_idx, data in enumerate(train_loader, 0):
        # 送入两个张量,一个张量是64个图像的特征,一个张量图片对应的数字
        inputs, target = data
        # 把输入输出迁入GPU
        inputs, target = inputs.to(device), target.to(device)
        # 梯度归零
        optimizer.zero_grad()

        # forward+backward+update
        outputs = model(inputs)
        # 计算损失,用的交叉熵损失函数
        loss = criterion(outputs, target)
        # 反馈
        loss.backward()
        # 随机梯度下降更新
        optimizer.step()

        # 每300次输出一次
        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d,%5d] loss:%.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0.0


def test():
    correct = 0
    total = 0
    # 不会计算梯度
    with torch.no_grad():
        for data in test_loader:  # 拿数据
            images, labels = data
            images, labels = images.to(device), labels.to(device)
            outputs = model(images)  # 预测
            # outputs.data是一个矩阵,每一行10个量,最大值的下标就是预测值
            _, predicted = torch.max(outputs.data, dim=1)  # 沿着第一维度,找最大值的下标,返回最大值和下标
            total += labels.size(0)  # labels.size(0)=64 每个都是64个元素,就可以计算总的元素
            # (predicted == labels).sum()这个是张量,而加了item()变为一个数字,即相等的数量
            correct += (predicted == labels).sum().item()
    print('Accuracy on test set:%d %%' % (100 * correct / total))  # 正确的数量除以总数


if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()

Residual net残差结构块

定义的该层输入和输出的大小是一样的

import torch.nn as nn
import torch.nn.functional as F


class ResidualBlock(nn.Module):
    def __init__(self,channels):
        super(ResidualBlock,self).__init__()
        self.channels = channels
        self.conv1 = nn.Conv2d(channels,channels,kernel_size=3,padding=1)
        self.conv2 = nn.Conv2d(channels,channels,kernel_size=3,padding=1)

    def forward(self,x):
        y = F.relu(self.conv1(x))
        y = self.conv2(y)
        return F.relu(x+y)


class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 16, kernel_size=5)
        self.conv2 = nn.Conv2d(16, 32, kernel_size=5)
        self.mp = nn.MaxPool2d(2)

        self.rblock1 = ResidualBlock(16)
        self.rblock2 = ResidualBlock(32)

        self.fc = nn.Linear(512, 10)

    def forward(self, x):
        in_size = x.size(0)
        x = self.mp(F.relu(self.conv1(x)))
        x = self.rblock1(x)
        x = self.mp(F.relu(self.conv2(x)))
        x = self.rblock2(x)
        x = x.view(in_size, -1)
        x = self.fc(x)
        return x

RNN

RNN基础实战

任务介绍:通过PyTorch搭建一个用于处理序列的RNN。

当我们以sin值作为输入,其对应的cos作为输出的时候,你会发现,即使输入值sin相同,其输出结果也可以是不同的,这样的话,以前学过的FC, CNN就难以处理,因为你的输出结果不仅仅依赖于输出,而且还依赖于之前的程序结果。所以说,RNN在这里就派上了用场。

代码实现

RNN参数:torch.nn.RNN()

参数含义
input_size输入 x 的特征数量
hidden_size隐状态 h 中的特征数量
num_layersRNN 的层数
nonlinearity指定非线性函数使用 [‘tanh’|’relu’]. 默认: ‘tanh’
bias如果是 False , 那么 RNN 层就不会使用偏置权重 b_ih 和 b_hh, 默认: True
batch_first如果 True, 那么输入 Tensor 的 shape 应该是 (batch, seq, feature),并且输出也是一样
dropout 如果值非零, 那么除了最后一层外, 其它层的输出都会套上一个 dropout 层
bidirectional如果 True , 将会变成一个双向 RNN, 默认为 False

首先,我们定义出RNN模型


import torch

from torch import nn



class Rnn(nn.Module):

def __init__(self, INPUT_SIZE):

super(Rnn, self).__init__()


self.rnn = nn.RNN(

input_size=INPUT_SIZE,

hidden_size=32,

num_layers=1,

batch_first=True

)


self.out = nn.Linear(32, 1)


def forward(self, x, h_state):

r_out, h_state = self.rnn(x, h_state)


outs = []

for time in range(r_out.size(1)):

outs.append(self.out(r_out[:, time, :]))

return torch.stack(outs, dim=1), h_state

选择模型进行训练:


import numpy as np

import matplotlib.pyplot as plt

import torch

from torch import nn

import rnn


# 定义一些超参数

TIME_STEP = 10

INPUT_SIZE = 1

LR = 0.02


# # 创造一些数据

# steps = np.linspace(0, np.pi*2, 100, dtype=np.float)

# x_np = np.sin(steps)

# y_np = np.cos(steps)

# #

# # “看”数据

# plt.plot(steps, y_np, 'r-', label='target(cos)')

# plt.plot(steps, x_np, 'b-', label='input(sin)')

# plt.legend(loc='best')

# plt.show()


# 选择模型

model = rnn.Rnn(INPUT_SIZE)

print(model)


# 定义优化器和损失函数

loss_func = nn.MSELoss()

optimizer = torch.optim.Adam(model.parameters(), lr=LR)


h_state = None # 第一次的时候,暂存为0


for step in range(300):

start, end = step * np.pi, (step+1)*np.pi


steps = np.linspace(start, end, TIME_STEP, dtype=np.float32)

x_np = np.sin(steps)

y_np = np.cos(steps)


x = torch.from_numpy(x_np[np.newaxis, :, np.newaxis])

y = torch.from_numpy(y_np[np.newaxis, :, np.newaxis])


prediction, h_state = model(x, h_state)

h_state = h_state.data


loss = loss_func(prediction, y)

optimizer.zero_grad()

loss.backward()

optimizer.step()

然后,画图看看最后拟合的结果


plt.plot(steps, y_np.flatten(), 'r-')

plt.plot(steps, prediction.data.numpy().flatten(), 'b-')

plt.show()

其拟合效果如下图:

可以看到,真实的结果和拟合的效果已经十分接近了。

进阶实战

1.准备数据


定义一个数据集类,并读取数据文件。

from torch.utils.data import Dataset
import pandas as pd

class NameDataset(Dataset):
    """数据集类"""
    def __init__(self, is_train_set=True):
        filename = './name_data/names_train.csv' if is_train_set else './name_data/names_test.csv'
        data = pd.read_csv(filename, header=None)
        self.names = data[0]
        self.len = len(self.names)
        self.countries = data[1]
        self.country_list = list(sorted(set(self.countries)))
        self.country_dict = self.getCountryDict()
        self.country_num = len(self.country_list)
    
    def __getitem__(self, index):
        return self.names[index], self.country_dict[self.countries[index]]
    
    def __len__(self):
        return self.len

    def idx2country(self, index):
        return self.country_list[index]

    def getCountryDict(self):
        country_dict = dict()
        for idx, country_name in enumerate(self.country_list, 0):
            country_dict[country_name] = idx
        return country_dict

    def getCountriesNum(self):
        return self.country_num

定义函数,用于将读取到的数据转化为tensor。

def name2list(name):
    """返回ASCII码表示的姓名列表与列表长度"""
    arr = [ord(c) for c in name]
    return arr, len(arr)


def make_tensors(names, countries):
    # 元组列表,每个元组包含ASCII码表示的姓名列表与列表长度
    sequences_and_lengths = [name2list(name) for name in names]
    # 取出所有的ASCII码表示的姓名列表
    name_sequences = [sl[0] for sl in sequences_and_lengths]
    # 取出所有的列表长度
    seq_lengths = torch.LongTensor([sl[1] for sl in sequences_and_lengths])
    # 将countries转为long型
    countries = countries.long()

    # 接下来每个名字序列补零,使之长度一样。
    # 先初始化一个全为零的tensor,大小为 所有姓名的数量*最长姓名的长度
    seq_tensor = torch.zeros(len(name_sequences), seq_lengths.max()).long()

    # 将姓名序列覆盖到初始化的全零tensor上
    for idx, (seq, seq_len) in enumerate(zip(name_sequences, seq_lengths), 0):
        seq_tensor[idx, :seq_len] = torch.LongTensor(seq)
    # 根据序列长度seq_lengths对补零后tensor进行降序怕排列,方便后面加速计算。
    # 返回排序后的seq_lengths与索引变化列表
    seq_lengths, perm_idx = seq_lengths.sort(dim=0, descending=True)
    # 根据索引变化列表对ASCII码表示的姓名列表进行排序
    seq_tensor = seq_tensor[perm_idx]
    # 根据索引变化列表对countries进行排序,使姓名与国家还是一一对应关系
    # seq_tensor.shape : batch_size*max_seq_lengths,
    # seq_lengths.shape : batch_size
    # countries.shape : batch_size
    countries = countries[perm_idx]
    return seq_tensor, seq_lengths, countries

2.定义模型

import torch
from torch.nn.utils.rnn import pack_padded_sequence

class RNNClassifier(torch.nn.Module):
    # input_size=128, hidden_size=100, output_size=18
    def __init__(self, input_size, hidden_size, output_size, n_layers=1, bidirectional=True):
        super(RNNClassifier, self).__init__()
        self.hidden_size = hidden_size
        self.n_layers = n_layers
        self.n_directions = 2 if bidirectional else 1  # 是否双向
        self.embedding = torch.nn.Embedding(input_size, hidden_size)  # 输入大小128,输出大小100。
        # 经过Embedding后input的大小是100,hidden_size的大小也是100,所以形参都是hidden_size。
        self.gru = torch.nn.GRU(hidden_size, hidden_size, n_layers, bidirectional=bidirectional)
        # 如果是双向,会输出两个hidden层,要进行拼接,所以线形成的input大小是 hidden_size * self.n_directions,输出是大小是18,是为18个国家的概率。
        self.fc = torch.nn.Linear(hidden_size * self.n_directions, output_size)
    
    def _init_hidden(self, batch_size):
        hidden = torch.zeros(self.n_layers * self.n_directions, batch_size, self.hidden_size)
        return hidden

    def forward(self, input, seq_lengths):
        # 先对input进行转置,input shape : batch_size*max_seq_lengths -> max_seq_lengths*batch_size 每一列表示姓名
        input = input.t()
        batch_size = input.size(1)  # 总共有多少列,既是batch_size的大小
        hidden = self._init_hidden(batch_size)  # 初始化隐藏层
        embedding = self.embedding(input)  # embedding.shape : max_seq_lengths*batch_size*hidden_size 12*64*100
        # pack_padded_sequence方便批量计算
        gru_input = pack_padded_sequence(embedding, seq_lengths)
        # 进入网络进行计算
        output, hidden = self.gru(gru_input, hidden)

        # 如果是双向的,需要进行拼接
        if self.n_directions == 2:
            hidden_cat = torch.cat([hidden[-1], hidden[-2]], dim=1)

        else:
            hidden_cat = hidden[-1]

        # 线性层输出大小为18
        fc_output = self.fc(hidden_cat)
        return fc_output

3.定义训练函数

def time_since(since):
    s = time.time() - since
    m = math.floor(s/60)
    s-= m*60
    return '%dm %ds' % (m, s)


def trainModel():
    total_loss = 0
    for i, (names, countries) in enumerate(trainloader, 1):  # 这里的1意思是 i 从1开始。
        # make_tensors函数返回经过降序排列后的 姓名列表,列表长度,国家
        inputs, seq_lengths, target = make_tensors(names, countries)
        # 输入姓名列表与列表长度向前计算
        output = classifier(inputs, seq_lengths)
        loss = criterion(output, target)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        total_loss += loss.item()
        if i % 10 == 0:
            print(i)
            print(f'[{time_since(start)}] Epoch {epoch} ', end='')
            print(f'[{i * len(inputs)}/{len(trainset)}] ', end='')
            print(f'loss={total_loss / (i * len(inputs))}')
    return total_loss

4.定义测试函数,跟训练函数相差不大

def testModel():
    correct = 0
    total = len(testset)
    print("evaluating trained model ...")
    with torch.no_grad():
        for i, (names, countries) in enumerate(testloader, 1):
            inputs, seq_lengths, target = make_tensors(names, countries)
            output = classifier(inputs, seq_lengths)
            pred = output.max(dim=1, keepdim=True)[1]
            correct += pred.eq(target.view_as(pred)).sum().item()
        percent = '%.2f' % (100 * correct / total)
        print(f'Test set: Accuracy {correct}/{total} {percent}%')
    return correct / total

5.主函数循环

from torch.utils.data import DataLoader
import time
import math

if __name__ == '__main__':
    
    N_EPOCHS = 30  # epoch
    HIDDEN_SIZE = 100  # 隐藏层的大小,也是Embedding后输出的大小
    BATCH_SIZE = 64
    N_COUNTRY = 18  # 总共有18个类别的国家,为RNN后输出的大小
    N_LAYER = 2
    N_CHARS = 128  # 字母字典的大小,Embedding输入的大小

    trainset = NameDataset(is_train_set=True)
    trainloader = DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True)

    testset = NameDataset(is_train_set=False)
    testloader = DataLoader(testset, batch_size=BATCH_SIZE, shuffle=False)

    # 建立分类模型
    classifier = RNNClassifier(N_CHARS, HIDDEN_SIZE, N_COUNTRY, N_LAYER)

    # 建立损失函数与优化器
    criterion = torch.nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(classifier.parameters(), lr=0.001)

    start = time.time()
    print("Training for %d epochs..." % N_EPOCHS)
    acc_list = []
    for epoch in range(1, N_EPOCHS + 1):
        # Train cycle
        trainModel()
        acc = testModel()
        acc_list.append(acc)

 

  • 10
    点赞
  • 106
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GoAI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值