FPN:Feature Pyramid Networks for Object Detection

一、前言

  • 特征金字塔可用于检测不同尺度目标,但最近的深度学习目标检测器避免使用它,部分原因是它带来了极大的计算量和内存需求

  • 本文利用深度卷积网络内在的多尺度、金字塔分级来构造具有很少额外成本的特征金字塔

  • 本文开发了一种具有横向连接的自顶向下架构,称为特征金字塔网络(FPN),用于在所有尺度上构建高级语义特征映射

  • 将FPN应用于一些目标检测器(如Faster R-CNN),结果得到了显著的改进

二、模型与方法

2.1 模型对比

在这里插入图片描述
图中:feature map用蓝色边框表示,边框越粗,表示其语义特征越强

(a) Featurized image pyramid
操作:

  • 使用图像金字塔构建特征金字塔
  • 每个尺度的图像的featue map都是独立计算的

结果:

  • 计算量大,内存消耗太大
  • 速度很慢

(b) Single feature map
操作:

  • 通过深层卷积得到最终的单一尺度的feature map
  • 只利用最终得到的feature map进行检测

结果:

  • 计算量少,检测速度也很快
  • 得到的语义特征比较单一
  • 对小目标特征提取的太少,导致小目标的检测效果不好

说明:分类任务中还有大部分早期目标检测都是使用这种结构,如YOLOv1,Faster RCNN

(c) Pyramidal feature hierarchy
操作:

  • 保存前向传播时每一个卷积层输出的featrue map
  • 重新使用这些保存的feature map进行预测

结果:

  • 卷积输出结果一般都会保存下来,所以重用它们几乎是零计算量的
  • 对小目标的检测效果依然不好

说明:该结构的典型代表就是SSD目标检测模型,但是SSD是从网络最高层开始构建金字塔,没有使用较低层的卷积层输出的feature map,即高分辨率的feature map(后证明这些对于检测小目标很重要)

(d) Feature Pyramid Network
操作:

  • 将低分辨率、强语义的特征与高分辨率、弱语义的特征通过自顶向下的路径和横向连接相结合

结果:

  • 输出结果是一个特征金字塔,每一层的feature map都具有丰富的语义
  • 可以用来代替(a)这种结构,同时不牺牲表征能力,速度或者内存

2.2 设计思路

卷积神经网络前向传播的过程中,每一层输出的feature map的从结果上来看就是一个特征金字塔

所以,本文很自然地利用了卷积神经网络输出多层次的feature map,并且在同时构建一个在所有尺度上都具有强大语义的特征金字塔,从而形成一个特征金字塔网络(Feature Pyramid Network)

2.3 FPN(Feature Pyramid Network)

在这里插入图片描述
FPN包括两个部分:

  • 自顶而上的过程
  • 自顶而下和侧向连接的融合过程

2.3.1 自顶而上的过程

自顶而上的过程就是卷积神经网络前向传播的输出不同尺度的feature map的过程。

在FPN中:

  • 按输出的feature map的大小,将卷积层划分为不同的stage
  • 每个stage之间的feature map大小比例相差为2
  • 每个stage对应特征金子塔中的一个level
  • 每个stage的最后一个feature map被选为对应特征金字中想要level的特征

在这里插入图片描述
以ResNet为例,选取conv2、conv3、conv4、conv5层的最后一个残差block输出的feature map作为特征金字塔对应level的特征,记为{C2、C3、C4、C5}。这几个特征层相对于原图的步长分别为4、8、16、32。此外,考虑到内存占用问题,没有将conv1包含在金字塔中。

2.3.2 自顶而下和侧向连接的融合过程

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 特征金字塔网络(Feature Pyramid Networks, FPN)是一种用于目标检测的神经网络架构。它通过在深层特征图上构建金字塔结构来提高空间分辨率,从而更好地检测小目标。FPN具有高效的多尺度特征表示和鲁棒性,在COCO数据集上取得了很好的表现。 ### 回答2: 特征金字塔网络(Feature Pyramid Networks,简称FPN)是一种用于目标检测的深度学习模型。该模型是由FAIR(Facebook AI Research)在2017年提出的,旨在解决单一尺度特征不能有效检测不同大小目标的问题。 传统的目标检测算法通常采用的是滑动窗口法,即在图像上以不同大小和不同位置进行滑动窗口的检测。但是,这种方法对于不同大小的目标可能需要不同的特征区域来进行检测,而使用单一尺度特征可能会导致对小目标的错误检测或漏检。FPN通过利用图像金字塔和多层特征提取,将不同尺度的特征合并起来,从而达到对不同大小目标的有效检测。 FPN主要分为两个部分:上采样路径(Top-Down Pathway)和下采样路径(Bottom-Up Pathway)。下采样路径主要是通过不同层级的卷积神经网络(CNN)来提取特征,每层都采用了非极大值抑制(Non-Maximum Suppression,NMS)方法来选择最具有代表性的特征。上采样路径则主要是将低层特征进行上采样操作,使其与高层特征的尺寸对齐,并与高层特征相加,实现特征融合。 FPN在目标检测中的优势体现在以下几个方面。首先,FPN可以提高模型对小目标的检测能力,同时仍保持对大目标的检测准确度。其次,FPN的特征金字塔结构可以在一次前向传递中完成目标检测,减少了计算时间。最后,FPN对于输入图像的尺寸和分辨率不敏感,可以在不同分辨率的图像上进行目标检测,从而适应多种应用场景。 总之,FPN是一种在目标检测领域中得到广泛应用的模型,其特征金字塔结构能够有效地解决单一尺度特征不足以检测不同大小目标的问题,并在检测准确率和计算效率方面取得了不错的表现。 ### 回答3: 特征金字塔网络是一种用于目标检测的深度学习模型,主要解决的问题是在不同尺度下检测不同大小的物体。在传统的卷积神经网络中,网络的特征图大小会不断减小,因此只能检测较小的物体,对于较大的物体则无法很好地检测。而特征金字塔网络则通过在底部特征图的基础上构建一个金字塔状的上采样结构,使得网络能够在不同尺度下检测不同大小的物体。 具体来说,特征金字塔网络由两个主要部分构成:共享特征提取器和金字塔结构。共享特征提取器是一个常规的卷积神经网络,用于提取输入图像的特征。而金字塔结构包括多个尺度的特征图,通过上采样和融合来获得不同尺度的特征表示。这些特征图之后被输入到后续的目标检测网络中,可以通过这些特征图来检测不同尺度的物体。 特征金字塔网络可以有效地解决目标检测任务中的尺度问题,并且在许多实际应用中表现出了优异的性能。例如,通过使用特征金字塔网络,在COCO数据集上得到的目标检测结果明显优于现有的一些目标检测算法。 总之,特征金字塔网络是一种非常有效的深度学习模型,可以处理目标检测任务中的尺度问题,提高模型在不同大小物体的检测精度。它在实际应用中具有很高的价值和应用前景。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值