labelImg的安装和使用

部署运行你感兴趣的模型镜像

对于开发者与研究者而言,一款免费、开源且易用的标注工具能极大提升效率。LabelImg 正是这样一个经典的选择,它专为目标检测任务设计,能直接生成PASCAL VOC或YOLO格式的标注文件,完美兼容主流深度学习框架。本文将为你提供一份清晰、无痛的LabelImg图文指南,从零开始,一步步带你完成安装与环境配置,并详解其核心功能与高效使用技巧,让你能快速上手,为自己的AI模型打造坚实的数据基石。

环境说明:

操作系统:win11

python版本: 3.7.16

labelimg版本: 1.8.1   labeimg.zip

1、数据清洗,删除与项目无关的图片。

2、下载labelimg.zip,并解压,解压后目录结构如下图所示。

打开命令行,切换到labelimg目录下(上图中的目录),执行以下命令:

pip3 install pyqt5 lxml

无报错即安装成功。

3、创建一个datasets目录,在datasets目录下再创建images和labels子目录(最终目录结构如下所示)。将所有待标注的图片复制到images目录下。

datasets
  ├─images
  └─labels

4、配置标注类别,打开labelimg路径下的data/predefined_classes.txt文件,将文件中的内容修改成自己的类名,尽量用英文字符。然后保存。

5、执行完成后,即可启动labelimg,切记需要切换到labelimg目录中:

python labelimg.py

启动后可看到如下界面:

6、配置labelimg

首先设置自动保存,点击view,勾选 Auto Save mode

然后选择图片保存目录,datasets/images。

打开后右下角会出现图片的列表

继续选择标注文件保存路径 datasets/labels。

最后,需要更改标注文件格式,这里采用yolo

7、接下来我们就可以开始标注了。

快捷键说明:

w:新建一个标注框

d:下一张图片(如果勾选了 Auto Save mode,会自动保存)

a:上一张图片

Delete:删除框

Ctrl + 滚动鼠标:图片放大缩小

每标注一个目标,都要选择对应的类别。

标注文件会在labels目录中,标注的文件名和图片文件名一样(后缀除外)。

常见错误:

Traceback (most recent call last):
  File ".......\labelImg\libs\canvas.py", line 458, in paintEvent
    p.drawLine(self.prevPoint.x(), 0, self.prevPoint.x(), self.pixmap.height())
TypeError: arguments did not match any overloaded call:
  drawLine(self, l: QLineF): argument 1 has unexpected type 'float'
  drawLine(self, line: QLine): argument 1 has unexpected type 'float'
  drawLine(self, x1: int, y1: int, x2: int, y2: int): argument 1 has unexpected type 'float'
  drawLine(self, p1: QPoint, p2: QPoint): argument 1 has unexpected type 'float'
  drawLine(self, p1: Union[QPointF, QPoint], p2: Union[QPointF, QPoint]): argument 1 has unexpected type 'float'

解决办法:

python版本过高,建议python版本使用3.9及以下。

您可能感兴趣的与本文相关的镜像

Yolo-v5

Yolo-v5

Yolo

YOLO(You Only Look Once)是一种流行的物体检测和图像分割模型,由华盛顿大学的Joseph Redmon 和Ali Farhadi 开发。 YOLO 于2015 年推出,因其高速和高精度而广受欢迎

### LabelImg 工具的安装使用 #### 一、概述 LabelImg 是一款强大的图像标注工具,适用于计算机视觉领域中的数据集构建。它支持多种格式的数据导出,如 PASCAL VOC YOLO 格式[^3]。 --- #### 二、安装方法 为了成功安装 LabelImg,需按照以下方式操作: 1. **安装依赖项** 需要先安装 PyQt5 lxml 库作为基础依赖。可以通过 pip 命令完成: ```bash pip install pyqt5 lxml ``` 2. **克隆源码仓库** 使用 Git 将 LabelImg 的官方代码库克隆到本地环境中: ```bash git clone https://github.com/tzutalin/labelImg.git cd labelImg ``` 3. **编译资源文件** 如果需要自定义界面样式或其他配置,则可能需要用到 `pyrcc5` 编译 `.qrc` 资源文件: ```bash pyrcc5 -o resources.py resources.qrc ``` 4. **运行程序** 在终端中执行以下命令启动 LabelImg: ```bash python labelImg.py ``` 此时会弹出图形化窗口供用户进行标注工作[^2]。 --- #### 三、具体使用流程 以下是关于如何利用 LabelImg 对图片进行标注的具体说明: 1. 打开软件后,在菜单栏选择【File】->【Change Save Dir...】设定保存路径; 2. 点击【Open Dir】按钮加载待处理的图片目录; 3. 利用鼠标拖拽绘制矩形框覆盖目标对象区域; 4. 输入对应的类别名称或者从下拉列表选取已存在的选项; 5. 按下键盘上的快捷键(默认为 W 键)确认当前选区并继续下一个标记; 6. 当全部完成后可以选择导出 XML 或 TXT 文件形式的结果[^4]。 对于像 YOLO 这样的深度学习框架来说,这些生成的信息非常宝贵,因为它们提供了精确的目标位置参数以便后续模型训练过程调用[^5]。 --- ### 提示事项 - 若遇到任何错误提示,请检查 Python 版本是否兼容以及所有必需模块都已被正确定位安装。 - 推荐在一个独立虚拟环境下管理此类第三方应用及其关联包集合以防污染全局环境。 ```python import sys print(sys.executable) # 查看当前使用的Python解释器路径 ``` ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值