给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的 k 个实例,这 k 个实例的多数属于某个类,就把该输入实例分为这个类。
优点: 精度高、对异常值不敏感、无数据输入假定
缺点: 计算复杂度高、空间复杂度高
适用数据范围: 数值型和标称型
算法比较简单
下面写两个例子:
文本型训练集:
import math
from numpy import *
from __future__ import print_function
import operator
from os import listdir
from collections import Counter
import matplotlib
import matplotlib.pyplot as plt
def file2matrix(filename):
fr = open(filename)
numberOfLines = len(fr.readlines())
returnMat = zeros((numberOfLines, 3)) # prepare matrix to return
classLabelVector = [] # prepare labels return
fr = open(filename)
index = 0
for line in fr.readlines():
line = line.strip()
listFromLine = line.split('\t')
returnMat[index, :] = listFromLine[0:3]
classLabelVector.append(int(listFromLine[-1]))
index += 1
return returnMat, classLabelVector
def autoNorm(dataSet):
minVals=dataSet.min(0)
maxVals=dataSet.max(0)
ranges=maxVals-minVals
normDataSet=zeros(shape(dataSet))
m=dataSet.shape[0]
normDataSet=dataSet-tile(minVals,(m,1))
normDataSet=normDataSet/tile(ranges,(m,1))
return normDataSet,ranges,minVals
def classify0(inX,dataSet,labels,k):
dataSetSize=dataSet.shape[0]
diffMat=tile(inX,(dataSetSize,1))-dataSet
sqDiffMat=diffMat**2
sqDistances=sqDiffMat.sum(axis=1)
distances=sqDistances**0.5
sortedDistIndicies=distances.argsort()
classCount={}
for i in range(k):
voteIlabel=labels[sortedDistIndicies[i]]
classCount[voteIlabel]=classCount.get(voteIlabel,0)+1
sortedClassCount=sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True)
return sortedClassCount[0][0]
def datingClassTest():
hoRatio=0.1
datingDataMat,datingLabels=file2matrix('2.KNN/2.KNN/datingTestSet2.txt')
normMat,ranges,minVals=autoNorm(datingDataMat)
m=normMat.shape[0]
numTestVecs=int(m*hoRatio)
print ('numTestVecs=',numTestVecs)
errorCount=0.0
for i in range(numTestVecs):
classifierResult=classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)
print ("the classifier came back with: %d, the real answer is : %d" %(classifierResult,datingLabels[i]))
if(classifierResult!=datingLabels[i]):errorCount+=1.0
print ("the total error rate is : %f"%(errorCount/float(numTestVecs)))
print (errorCount)
datingClassTest()
a1=array([[1,1,1],[0,0,0],[1,1,1]])
a2=a1.shape[0]
print(a2)
a3=tile([1,1,1],(a2,1))-a1
print(a3)
a4=a3.sum(axis=1)
print(a4)
图像类型训练集:
import math
from numpy import *
from __future__ import print_function
import operator
from os import listdir
from collections import Counter
import matplotlib
import matplotlib.pyplot as plt
def img2vector(filename):
returnVect=zeros((1,1024))
fr=open(filename)
for i in range(32):
lineStr=fr.readline()
for j in range(32):
returnVect[0,32*i+j]=int(lineStr[j])
return returnVect
def classify0(inX,dataSet,labels,k):
dataSetSize=dataSet.shape[0]
diffMat=tile(inX,(dataSetSize,1))-dataSet
sqDiffMat=diffMat**2
sqDistances=sqDiffMat.sum(axis=1)
distances=sqDistances**0.5
sortedDistIndicies=distances.argsort()
classCount={}
for i in range(k):
voteIlabel=labels[sortedDistIndicies[i]]
classCount[voteIlabel]=classCount.get(voteIlabel,0)+1
sortedClassCount=sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True)
return sortedClassCount[0][0]
def handwritingClassTest():
hwLabels=[]
trainingFileList=listdir('2.KNN/2.KNN/trainingDigits')
m=len(trainingFileList)
trainingMat=zeros((m,1024))
for i in range(m):
fileNameStr=trainingFileList[i]
fileStr=fileNameStr.split('.')[0]
classNumStr=int(fileStr.split('_')[0])
hwLabels.append(classNumStr)
trainingMat[i,:]=img2vector('2.KNN/2.KNN/trainingDigits/%s'% fileNameStr)
testFileList=listdir('2.KNN/2.KNN/testDigits')
errorCount=0.0
mTest=len(testFileList)
for i in range(mTest):
fileNameStr=testFileList[i]
fileStr=fileNameStr.split('.')[0]
classNumStr=int(fileStr.split('_')[0])
vectorUnderTest=img2vector('2.KNN/2.KNN/testDigits/%s'% fileNameStr)
classifierResult=classify0(vectorUnderTest,trainingMat,hwLabels,3)
print("the classifier came back with: %d,the real answer is : %d"%(classifierResult,classNumStr))
if(classifierResult!=classNumStr):errorCount+=1.0
print("\nthe total number of errors is : %d"%errorCount)
print("\nthe total error rate is : %f"%(errorCount/float(mTest)))
handwritingClassTest()