1分钟学会部署DeepSeek大模型!硅基流动+Cherry Studio极速上手攻略

引言

你是否曾因网页版大模型卡顿而烦恼?是否因本地部署对硬件的高要求而望而却步?现在,这些问题将迎刃而解!本文将为你揭秘如何通过硅基流动平台和Cherry Studio软件,1分钟快速部署DeepSeek大模型,轻松实现高效、低成本的AI开发!无论你是AI新手还是资深开发者,这篇教程都将成为你的得力助手。


一、为什么选择硅基流动+Cherry Studio?

  1. 极速部署:通过云端API,1分钟完成模型加载,无需复杂配置。

  2. 无需高配硬件:云端服务解决本地部署的高成本问题。

  3. 流畅体验:API调用确保运行稳定,告别网页版卡顿。

  4. 免费试用:硅基流动提供免费资源,降低学习和开发门槛。

二、1分钟极速部署DeepSeek大模型

2.1 访问硅基流动

打开硅基流动官方网站:硅基流动

2.2 注册账号

  1. 填写手机号码,获取验证码,点击“注册”按钮就能完成注册

2.3 创建API密钥

  1. 登录后进入账户管理的“API秘钥”页面

  2. 点击“新建API密钥”,秘钥描述可随意输入,点击新建秘钥即能完成秘钥创建。


三、Cherry Studio极速配置与使用

3.1 下载与安装Cherry Studio - 全能的AI助手

访问Cherry Studio官方网站:Cherry Studio,下载并安装适合你系统的版本。 一直点下一步即能完成软件的安装。

3.2 配置硅基流动API秘钥

  1. 打开硅基流动网页,进入“API秘钥”页面,点击刚才创建的秘钥完成秘钥复制。

  2. 打开Cherry Studio,进入“设置①”-“硅基流动②”-“把上一步复制的秘钥粘贴至③处”。

3.3 加载DeepSeek模型(以deepseek-ai/DeepSeek-V3为例)

  1. 打开硅基流动网页,选择“模型广场”,找到并点击deepseek-ai/DeepSeek-V3模型,在弹框点击模型名字左侧完成模型名字的复制。

  2. 在Cherry Studio中,进入*设置①”-“硅基流动②”-“点击添加③"-“把上一步赋值的名字粘贴至④处“-”点击添加模型⑤“。

  3. 点击”检查“,在弹窗下拉选择“deepseek-ai/DeepSeek-V3”,点击“确定”,当出现连接成功字样时,代表已完成模型加载。

3.4 运行与测试

  1. 打开Cherry Studio软件,点击“①对话”,点击“②模型名字”,可选择刚才加载的模型,点击“③添加助手”可根据自己的需求完成对应的功能添加。

  2. 完成上述步骤之后既可以跟deepseek进行对话了。

此方法也同样适合使用其他模型,如果对使用要求不那么高,可以选择一下免费的模型来使用


四、进阶技巧

  1. 知识库创建:结合下图三个红框,可完成自己知识库的创建,知识库名称根据自我习惯进行自定义,选择嵌入模型之后,点击“确定”按钮即可完成姿势库的新建。

  2. 知识库扩展:通过不断往创建的知识库中输入跟库相关的知识,支持上传文件、添加本地目录、添加多个网址、网站、笔记第二个方式,使AI工具在自己所处的行业显得更加专业。

  3. 模型微调:通过硅基流动的微调工具,定制化训练DeepSeek

  4. 成本控制:按需使用硅基流动资源,仅为实际消耗付费。


五、总结

通过硅基流动和Cherry Studio,你可以在1分钟内高效部署DeepSeek大模型,无需高配硬件,畅享流畅体验。无论你是初学者还是专业开发者,这种组合都将为你的AI开发带来极大便利。


六、参考链接

### 流动Cherry Studio配置教程 #### 一、环境准备 为了成功部署流动DeepSeek大模型并使用Cherry Studio,在开始之前需要确保拥有合适的运行环境。这通常意味着一台具有足够计算资源(尤其是GPU支持)的机器以及Python开发环境已经就绪。 #### 二、安装Cherry Studio 按照官方提供的指导完成Cherry Studio软件包的获取与安装过程[^2]。此过程中需要注意版本兼容性和依赖项管理,以避免后续可能出现的技术难题。 #### 三、加载预训练模型 一旦Cherry Studio被正确设置好之后,则可以着手于导入由流动生成的大规模语言模型——即DeepSeek系列之一。具体操作涉及指定路径指向存储着所需权重文件的位置,并确认所有必要的配置选项都已适当调整以便顺利启动服务[^1]。 ```python from cherry_studio import ModelLoader model_loader = ModelLoader() deepseek_model = model_loader.load('path/to/deepseek/weights') ``` #### 四、执行推理任务 当一切准备工作完成后,即可利用所加载好的DeepSeek来进行实际的数据处理工作。这里可以通过API接口向该模型提交待分析文本片段作为输入,并接收经过预测后的输出结果用于进一步的应用场景中去。 ```python input_text = "example sentence" output_result = deepseek_model.predict(input_text) print(output_result) ``` #### 五、撰写技术分享文章 最后一步是在像CSDN这样的平台上记录整个项目实施经历和技术细节。编写此类博文不仅有助于个人总结学习成果,还能为其他开发者提供有价值的参考资料。建议围绕以下几个方面展开叙述: - **背景介绍**:解释为什么选择这个特定的主题进行研究; - **解决方案概述**:描述采用了哪些工具和技术来解决问题; - **实践经验分享**:详细介绍遇到的问题及其解决办法; - **未来展望**:讨论下一步计划或是对该领域发展趋势的看法;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值