《统计学习方法》第14章习题答案

14.2

定义1:设 T T T为给定的正数,若集合 G G G中任意两个样本 x i , x j x_i,x_j xi,xj,有 d i j ≤ T d_{ij} \le T dijT,则称 G G G为一个类。

1)设 T ′ T' T为给定的正数,取 T ′ = T T' = T T=T,根据定义1可知,对集合 G G G的任意样本 ,一定存在 x j x_j xj,有 d i j ≤ T d_{ij} \le T dijT。因此可以推出定义2。

2)将G中所有的 x j ≠ x i x_j \neq x_i xj=xi对应的 d i j d_{ij} dij相加得 ∑ x j ∈ G d i j ≤ ( n G − 1 ) T \sum_{x_j \in G} d_{ij} \le (n_G - 1)T xjGdij(nG1)T,由此可得 1 ( n G − 1 ) ∑ x j ∈ G d i j ≤ T \frac{1}{(n_G - 1)}\sum_{x_j \in G} d_{ij} \le T (nG1)1xjGdijT。因此可以推出定义3。

3)令 V = T V=T V=T,则 d i j ≤ V d_{ij} \le V dijV 。将 d i j ≤ T d_{ij} \le T dijT对任意 x i , x j x_i,x_j xi,xj进行求和,得 ∑ x i ∈ G ∑ x j ∈ G d i j ≤ n G ( n G − 1 ) T \sum_{x_i \in G}\sum_{x_j \in G} d_{ij} \le n_G(n_G - 1)T xiGxjGdijnG(nG1)T,即 1 n G ( n G − 1 ) ∑ x i ∈ G ∑ x j ∈ G d i j ≤ T \frac{1}{n_G(n_G - 1)} \sum_{x_i \in G}\sum_{x_j \in G} d_{ij} \le T nG(nG1)1xiGxjGdijT。因此可以推出定义3。

14.3

本等式类似于证明将n个有标志的球放进k个有区别的盒子,记 A i = { 第 i 个 盒 子 是 空 的 } A_i=\{第i个盒子是空的\} Ai={i}

所有可能的放置方案有 k n k^n kn种。

至少有1个盒子是空的: ∑ i = 1 n ∣ A i ∣ = k ( k − 1 ) n = ( k 1 ) ( k − 1 ) n \sum_{i=1}^n \mid A_i\mid = k(k-1)^n = \begin{pmatrix} k \\ 1 \\ \end{pmatrix} (k-1)^n i=1nAi=k(k1)n=(k1)(k1)n

至少有2个盒子是空的: ∑ i = 1 n ∑ j = i + 1 n ∣ A i ∩ A j ∣ = ( k 2 ) ( k − 2 ) n \sum_{i=1}^n \sum_{j=i+1}^n \mid A_i \cap A_j\mid = \begin{pmatrix} k \\ 2 \\ \end{pmatrix} (k-2)^n i=1nj=i+1nAiAj=(k2)(k2)n

至少有 l l l个盒子是空的: ∑ i i = 1 n ∑ i 2 = i 1 + 1 n … ∑ i l = i l − 1 n ∣ A i 1 ∩ A i 2 ∩ … ∩ A i l ∣ = ( k l ) ( k − l ) n \sum_{i_i=1}^n \sum_{i_2=i_1+1}^n \ldots \sum_{i_l=i_{l-1}}^n \mid A_{i_1} \cap A_{i_2} \cap \ldots \cap A_{i_l} \mid = \begin{pmatrix} k \\ l \\ \end{pmatrix} (k-l)^n ii=1ni2=i1+1nil=il1nAi1Ai2Ail=(kl)(kl)n

所有盒子里面均不是空盒的方案数是 ∣ A 1 ˉ ∩ A 2 ˉ ∩ … ∩ A k ˉ ∣ \mid \bar{A_1} \cap \bar{A_2} \cap \ldots \cap \bar{A_k}\mid A1ˉA2ˉAkˉ

= k n − ∑ i = 1 n ∣ A i ∣ + ∑ i = 1 n ∑ j = i + 1 n ∣ A i ∩ A j ∣ + … + ( − 1 ) k ∑ i i = 1 n ∑ i 2 = i 1 + 1 n … ∑ i k = i l − 1 n ∣ A i 1 ∩ A i 2 ∩ … ∩ A i k ∣ = k^n -\sum_{i=1}^n \mid A_i\mid + \sum_{i=1}^n \sum_{j=i+1}^n \mid A_i \cap A_j\mid +\ldots + (-1)^k \sum_{i_i=1}^n \sum_{i_2=i_1+1}^n \ldots \sum_{i_k=i_{l-1}}^n \mid A_{i_1} \cap A_{i_2} \cap \ldots \cap A_{i_k} \mid =kni=1nAi+i=1nj=i+1nAiAj++(1)kii=1ni2=i1+1nik=il1nAi1Ai2Aik = k n − ( k 1 ) ( k − 1 ) n + ( k 2 ) ( k − 2 ) n − ⋯ + ( − 1 ) k ( k k ) ( k − k ) n = ∑ l = 0 k ( − 1 ) l ( k l ) ( k − l ) n =k^n - \begin{pmatrix} k \\ 1 \\ \end{pmatrix} (k-1)^n+ \begin{pmatrix} k \\ 2 \\ \end{pmatrix} (k-2)^n - \dots + (-1)^k \begin{pmatrix} k \\ k \\ \end{pmatrix} (k-k)^n = \sum_{l=0}^k (-1)^l \begin{pmatrix} k \\ l\\ \end{pmatrix} (k-l)^n =kn(k1)(k1)n+(k2)(k2)n+(1)k(kk)(kk)n=l=0k(1)l(kl)(kl)n

实际上这些盒子是无区别的,所以 S ( n , k ) = 1 k ! ∑ l = 0 k ( − 1 ) l ( k l ) ( k − l ) n = 1 k ! ∑ l = 0 k − 1 ( − 1 ) l ( k l ) ( k − l ) n = 1 k ! ∑ l = 1 k ( − 1 ) k − l ( k l ) l n S(n,k) = \frac{1}{k!}\sum_{l=0}^k (-1)^l \begin{pmatrix} k \\ l\\ \end{pmatrix} (k-l)^n=\frac{1}{k!}\sum_{l=0}^{k-1} (-1)^l \begin{pmatrix} k \\ l\\ \end{pmatrix} (k-l)^n= \frac{1}{k!}\sum_{l=1}^k (-1)^{k-l} \begin{pmatrix} k \\ l\\ \end{pmatrix} l^n S(n,k)=k!1l=0k(1)l(kl)(kl)n=k!1l=0k1(1)l(kl)(kl)n=k!1l=1k(1)kl(kl)ln

因此讲n个样本分到k类,所有可能的分法的数目是: S ( n , k ) = 1 k ! ∑ l = 1 k ( − 1 ) k − l ( k l ) l n S(n,k) = \frac{1}{k!}\sum_{l=1}^k (-1)^{k-l} \begin{pmatrix} k \\ l\\ \end{pmatrix} l^n S(n,k)=k!1l=1k(1)kl(kl)ln

  • 6
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值