论文笔记:Optimal Transport for Conditional Domain Matching and Label shift

本文研究无监督迁移学习,也就是说在目标域中y的标签是缺失。最泛化的情况是同时存在label shift和class-conditional shift。
label shift: p S ( y = j ) ≠ p T ( y = j ) p_S(y=j)\neq p_T(y=j) pS(y=j)=pT(y=j)
class-conditional shift: p S ( z ∣ y = j ) ≠ p T ( z ∣ y = j ) p_S(z|y=j)\neq p_T(z|y=j) pS(zy=j)=pT(zy=j)

标记

含义
在这里插入图片描述 输入和输出空间
在这里插入图片描述 潜在空间
在这里插入图片描述 从X到Z的representation mappings的集合
在这里插入图片描述 假设空间,从Z到Y的函数集合
U {S, T}
在这里插入图片描述 潜在空间的条件概率
在这里插入图片描述 类别j的标签比例

过往研究举例

  • Zhang等人(2013)使用分布的核嵌入来估计重要权值,并对样本进行转换,从而匹配类条件分布。
  • Gong等人(2016)遵循类似的想法,假设存在一个将源类条件映射到目标类条件的线性映射。
  • Combes等人(2020)提出了对这一问题的理论分析,表明通过匹配两个领域中的标签比例和类条件,可以实现目标泛化。

核心目标

在上述偏移存在的情况下,无监督迁移学习的核心目标是优化如下问题:
在这里插入图片描述

  • L ( . , . ) L(., .) L(.,.)是连续损失函数
  • D ( . , . ) D(., .) D(.,.)是源域和目标域的概率分布的距离度量
  • Ω ( . , . ) \Omega(., .) Ω(.,.)是罚函数项

因此具体目标是

  • 最小化边际分布的距离
  • 正确预测标签

最优传输

最优传输最早在18世纪80年代由蒙格(Monge)提出,传统的蒙格表示法较为复杂。在上世纪由Kantorovich提出新的松弛表示法,他还在1975年因这个贡献获得诺贝尔经济学奖。
最优传输可以对离散情况和连续情况都讨论,本论文只需要考虑离散情况。

例子

在下图中有 { x i } i = 1 N \{x_i\}_{i=1}^N { xi}i=1N个仓库, { y j } j = 1 N \{y_j\}_{j=1}^N { yj}j=1N

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值