机器学习/深度学习准备资料(待更新)

朴素贝叶斯

假设不同的特征是相互独立的

属于监督学习的生成模型,实现简单,没有迭代,并有坚实的数学理论(即贝叶斯定理)作为支撑。

贝叶斯方法是以贝叶斯原理为基础,使用概率统计的知识对样本数据集进行分类。由于其有着坚实的数学基础,贝叶斯分类算法的误判率是很低的。贝叶斯方法的特点是结合先验概率和后验概率,即避免了只使用先验概率的主观偏见,也避免了单独使用样本信息的过拟合现象。贝叶斯分类算法在数据集较大的情况下表现出较高的准确率,同时算法本身也比较简单

朴素贝叶斯(naive Bayes)法是基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入输出的联合概率分布;然后基于此模型,对给定的输入 x,利用贝叶斯定理求出后验概率最大的输出y

激活函数

Relu

f(x) = \max(x,0)

Sigmoid

1/(1+e^(-z))

Tanh

双曲正切

LeakyRelu

Batch Normalization

批量归⼀化利⽤小批量上的均值和标准差,不断调整神经⽹络中间输出,从而使整个神经⽹络在各层的中间输出的数值更稳定。

全连接中

将批量归化层置于全连接层中的仿射变换和激活函数之间。设全连接层的输u,权重参数和偏差参数分别为Wb,激活函数为ϕ。设批量归化的运算符为BN。那么,使批量归化的全连接层的输出为ϕ(BN(x))

卷积中

批量归化发在卷积计算之后、应激活函数之前。如果卷积计算输出多个通道,我们需要对这些通道的输出分别做批量归化,且每个通道都拥有独的拉伸和偏移参数,并均为标量。

K-means

输入:样本集D,簇的数目k,最大迭代次数N;

输出:簇划分(k个簇,使平方误差最小);

算法步骤:

(1)为每个聚类选择一个初始聚类中心;

(2)将样本集按照最小距离原则分配到最邻近聚类;

(3)使用每个聚类的样本均值更新聚类中心;

(4)重复步骤(2)、(3),直到聚类中心不再发生变化;

(5)输出最终的聚类中心和k个簇划分。

迭代方法

梯度下降

批量梯度下降:每次更新使用所有数据进行计算。

随机梯度下降:仅使用一个样本计算梯度。

 Adagrad

计算更新步长时,增加了分母:梯度平方累积和的平方根。

经典评价指标

Recall, precision

Recall = TPR, Recall表示实际为正的样本被判断为正样本的比例; 
precision = TP/(TP+FP) 表示预测为正的样本中,实际的正样本的数量。 
F1-score


F1 = 2 * P * R / (P+R)
 

Averaged balanced score

Averaged \;balanced \;score = \frac{TPR+TNR}{2}

 参考:https://www.jianshu.com/p/2eb432f31a6b

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值