写在前面
Agent,智能体,通常被认为是Open AI的下一个发展方向。笔者认为,如果将大模型比作可以根据刺激进行收缩和舒张的神经元,智能体就好比是大脑,可以自由的思考,有记忆分析逻辑推理能力,有问题解决问题的能力,没有问题就创造问题解决问题的能力。
Agent-FLAN 数据集是上海人工智能实验室 InternLM 团队所推出的一个智能体微调数据集,其通过将原始的智能体微调数据以多轮对话的方式进行分解,对数据进行能力分解并平衡,以及加入负样本等方式构建了高效的智能体微调数据集,从而可以大幅提升模型的智能体能力。‘
lagent,一个开源的 LLM 智能体框架,允许使用者快速将一个大语言模型转换成智能体,并提供一些典型工具来激发大语言模型的潜能。其主要包含三个模块:
agents | 实现了多种智能体,如 ReAct,AutoGPT。 |
llms | 支持多种大语言模型,包括在 HuggingFace 上托管的开源模型(Llama-2, InterLM)及 GPT3.5/4 等闭源模型。 |
actions | 包含一系列工具,并提供工具执行器来统一管理。 |
这里附上机智流的Llama3教程链接:
1、数据集准备
按照之前的环境,配置好必要的模型以及模块:
# 创建镜像并下载依赖
conda crea