晓光尘梦
码龄8年
关注
提问 私信
  • 博客:19,540
    19,540
    总访问量
  • 15
    原创
  • 100,167
    排名
  • 193
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2016-12-13
博客简介:

不负韶华不负己

博客描述:
世界给我以压力,我还世界以奇迹
查看详细资料
  • 原力等级
    成就
    当前等级
    2
    当前总分
    138
    当月
    4
个人成就
  • 获得257次点赞
  • 内容获得8次评论
  • 获得268次收藏
  • 代码片获得146次分享
创作历程
  • 15篇
    2024年
成就勋章
TA的专栏
  • 大模型学习
    10篇
  • 其他知识点学习
    1篇
  • 深度学习
  • AI绘画学习
  • 软考学习
  • python学习
    4篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

186人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

python程序小工具——对比两个文件夹差异

如果需要对比确保文件是否修改,可以在获取当前文件夹下文件的函数get_files里面,添加记录文件的最后修改时间,与文件名进行拼接组合成key,这样在后续两文件夹对比时也可以分离出修改时间。功能说明:给了两个文件夹,需要对比出两个文件夹的文件不同之处,包括前一个文件夹比后一个文件夹减少了哪些文件或子文件夹,亦或是后一个比前一个多了多少。1、由于当前的程序只是对比了文件名相同与否,并不能保证后一个文件夹中的文件是否只是文件名相同,但是文件内容已经进行了修改。保留拓展名放置于key中。
原创
发布博客 2024.07.02 ·
1077 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

python程序小工具——遍历解压压缩包

只要进入zipfile的源码,定位所有cp437的位置,用指定的编码进行替换即可,我这里是都替换成gbk,最后保存,这样解压就不会出现乱码。功能说明:解压一个压缩文件,解压格式可能是zip、7z、rar,此外压缩包下面可能还有压缩包,把所有压缩包都解压成文件夹。2、在解压zip格式的压缩包时候,使用zipfile模块后,解压出来的文件夹名基本都是乱码,这主要是编码格式导致的,因为。在这里做个学习笔记,并把自己的成果留存下,一部分是百度得到的,一部分是自己构思的逻辑组装的。使用rar模块解压时。
原创
发布博客 2024.07.02 ·
459 阅读 ·
5 点赞 ·
0 评论 ·
1 收藏

从零手搓大模型之路(四、TinyEval的构建)

这是该系列最后一堂课,主要是对比评测模型的好坏程度,给模型进行打分。对于大模型来说,输出结果纷杂,也会导致评测的指标也有众多选择。本文也主要学习下相关的评测指标,先不将评测作为现阶段学习的重点。等自认为大模型的学习有一定成果后再进一步研究。手搓大模型。
原创
发布博客 2024.05.28 ·
1863 阅读 ·
29 点赞 ·
0 评论 ·
28 收藏

Python之collections类

之前手写在笔记本上的,整理到这里,以免笔记丢失。这里也主要是介绍有这些类,主要是了解其功能作用,具体使用方法再另寻搜索。namedtuple创建命名元组子类的工厂函数,生成可用名字访问元素内容的tuple子类deque类似于list,实现两端快速添加(append)和弹出(pop)ChainMap类似于dict,多个映射集合到一个视图里Counter字典子类,提供了可哈希对象的计数功能字典子类,保留添加顺序,有序字典字典子类,工厂函数,为字典查询提供默认值UserDict。
原创
发布博客 2024.05.25 ·
953 阅读 ·
19 点赞 ·
0 评论 ·
7 收藏

从零手搓大模型之路(三、TinyAgent的构建)

第三堂课是关于Agent的构建,可能是之前的博文学习llama3时进行过agent的能力体验,感觉这堂课还是比较轻松。也借助这个机会,重温了一遍agent,也翻阅了一些文章,了解了下ReAct,碰巧最近本地部署了qwen-7b-int4的模型,所以本博文就记录下将教程中的大模型替换成qwen的输出样貌以及其他前面博文没提到的内容。手搓大模型ReAct论文链接一文带你了解基于大模型的AgentReAct(Reasoning and Acting,推理+行为)
原创
发布博客 2024.05.24 ·
901 阅读 ·
7 点赞 ·
1 评论 ·
29 收藏

ffmpeg音频命令(常用篇)

使用ffmpeg的主要原因是工作需要,期间总是会涉及音频的采样率、音量啥的转换,音频的剪切与合成叠加。这是以前在别的平台发布的,整合一下丢在这,方便以后查阅。
原创
发布博客 2024.05.23 ·
1394 阅读 ·
20 点赞 ·
1 评论 ·
28 收藏

Python魔法方法

以前手写在笔记本上的知识,这次把这些杂七杂八整理下上云,省的以后笔记本不知道丢哪里。python魔法方法汇总主要是双下划线方法,是一系列特殊的方法,其名称以两个下划线开头和结尾。这些方法在Python的类定义中扮演重要角色,允许开发者通过它们来自定义类的行为,使得类能够以更自然的方式与Python的语言特性互动。
原创
发布博客 2024.05.22 ·
704 阅读 ·
10 点赞 ·
1 评论 ·
12 收藏

从零手搓大模型之路(二、手搓一个RAG)

第二堂是动手构建一个Tiny-RAG,也就是RAG的简化版本,只包含RAG的核心功能Retrieval和Generation。整体看完源码,并听完相应的视频讲解,内容感觉还算是很容易明白,本博文记录下自己感觉相对重要的以及一些思考(持续补充)。Tiny-RAG构建检索增强生成技术(Retrieval-Augmented Generation,RAG),它的出现主要是解决大模型的“幻觉”问题,即当询问者询问一些大模型训练数据不包含的数据(如询问一些时效性比较强的或者是专业性比较强的问题),大模型可能会。
原创
发布博客 2024.05.20 ·
805 阅读 ·
17 点赞 ·
1 评论 ·
17 收藏

从零手搓大模型之路(一、学习Qwen模型架构)

五月,依旧是给自己挖坑,参加了DataWhale的五月自学课堂(从零手搓大模型实战)。说是从零手搓,但深知自己远远没有大佬水平,达不到研究透透的程度,所以也就是看源码了解下内部逻辑,简简单单写写心得,期望有朝一日也能成为大佬。So,今天挖的坑让明天的自己哭着来填(哭?哭也是要算时间的!。饭得一口一口吃,路得一点一点走。从零手搓大模型Qwen2逐行代码分析本博文里面图来源于课程链接。开卷开卷!(怎么感觉东西越学越多)这张图第一眼看上去确实很唬人,如果从左往右一点点耐心看,还是能看出些端倪。
原创
发布博客 2024.05.16 ·
5938 阅读 ·
61 点赞 ·
3 评论 ·
78 收藏

Llama3小白自学路(六、OpenCompass评测Llama3)

OpenCompass是上海人工智能实验室研发的大模型开源评测体系。该体系是面向大语言模型、多模态大模型等各类模型的一站式评测平台。机智流Llama3超级课堂。
原创
发布博客 2024.05.12 ·
1528 阅读 ·
35 点赞 ·
0 评论 ·
14 收藏

Llama3小白自学路(五、Agent 能力体验+微调Lagent 版)

Agent,智能体,通常被认为是Open AI的下一个发展方向。笔者认为,如果将大模型比作可以根据刺激进行收缩和舒张的神经元,智能体就好比是大脑,可以自由的思考,有记忆分析逻辑推理能力,有问题解决问题的能力,没有问题就创造问题解决问题的能力。Agent-FLAN 数据集是上海人工智能实验室 InternLM 团队所推出的一个智能体微调数据集,其通过将原始的智能体微调数据以多轮对话的方式进行分解,对数据进行能力分解并平衡,以及加入负样本等方式构建了高效的智能体微调数据集,从而可以大幅提升模型的智能体能力。
原创
发布博客 2024.05.12 ·
496 阅读 ·
3 点赞 ·
0 评论 ·
6 收藏

Llama3小白自学路(四、LMDeploy部署Llama3)

显存开销大、需要缓存大量的kv、数据长度不统一(动态shape)、请求数量不固定,token逐个生成硬件设备巨大的存储开销训练推理token的加速生成、内存的有效管理利用、动态shape的处理服务系统响应时间的降低、系统吞吐量的提升是一个用于压缩、部署、服务 LLM 的工具包,由 MMRazor 和 MMDeploy 团队开发,英伟达设备上部署的全流程解决方案,其包括模型轻量化、推理和服务。高效的推理引擎、交互式推理模式、量化。主要说一下量化,因为后面主要有对量化进行课程实践。
原创
发布博客 2024.05.12 ·
1017 阅读 ·
20 点赞 ·
0 评论 ·
21 收藏

Llama3小白自学路(三、llama3图片能力微调)

前部分依旧是技术流的教程copy及相关笔记。但说实话,在复现这一部分中,遇到了很多问题,后面的QA我会把遇到的进行记录。课程背景是XTuner 团队放出了基于 Llama3-8B 的 LLaVA 模型。然后机智流带领我们基于 Llama3-8B-Instruct 和 XTuner 团队预训练好的 Image Projector 微调多模态图文理解模型 LLaVA。LLaVA模型,即文本单模型LLM和训练出来的Image Projector的组合。LLaVA构建训练阶段。
原创
发布博客 2024.05.12 ·
1489 阅读 ·
19 点赞 ·
0 评论 ·
17 收藏

Llama3小白自学路(二、llama3个人助手微调)

前面是按照技术流的视频进行copy复制,后面会根据一些思考以及其他卷友的答疑进行尝试(新章节)。机智流Llama3超级课堂。
原创
发布博客 2024.05.12 ·
460 阅读 ·
9 点赞 ·
0 评论 ·
1 收藏

Llama3小白自学路(一、llama3部署)

24年五一期间,看到机智流举办的卷羊驼活动,碰巧也对其感兴趣,便以小白的身份报名参加卷军。这也是我第一次写自我成长学习的博客,主要也算是对这些做一个知识总结和学习过程中的理解,欢迎一起讨论研究,争取做大做强,再创辉煌。机智流Llama3超级课堂。
原创
发布博客 2024.05.12 ·
401 阅读 ·
2 点赞 ·
1 评论 ·
7 收藏
加载更多