深度学习的数学原理-复杂函数求导的链式传递及多变量近似公式


排版可能更好一点的永久原文链接: 深度学习的数学原理-复杂函数求导的链式传递及多变量近似公式

前言

前文中对导数、偏导数已经有了概念并能进行简单计算,本篇主要介绍单变量和多变量的复合函数如何求导,以及近似公式的计算

正文

复杂函数求导

如果一个函数比较复杂,无论是用公式也好,还是用导数的定义强算也好,都比较麻烦,于是书中又介绍了关于复合函数的快速求导方法(高中数学知识),以及扩展了多变量复合函数的链式法则。

神经网络中的复合函数

这里又祭出那个十分熟悉的公式

w1, w2, …, wn为各输入对应的权重,b为神经单元的偏置。输出函数是如下的x1, x2, …, xn的一次函数f和激活函数a的复合函数。

可以把这个函数看为两个函数的复合函数

单变量复合函数链式法则
<
### 深度学习中的数学概念 深度学习的核心依赖于多种数学工具,这些工具帮助构建模型并优化其性能。以下是深度学习中常见的数学概念及其作用: #### 1. **函数** 函数是描述输入与输出之间关系的基础工具,在深度学习中用于定义神经网络的映射能力。常用的函数包括线性函数、激活函数(如 Sigmoid、ReLU)、损失函数等[^4]。 #### 2. **数列与序列** 数列的概念在深度学习中主要用于分析迭代过程的行为,例如梯度下降过程中参数更新的历史记录可以看作是一个数列[^1]。 #### 3. **向量与矩阵** 向量和矩阵是表示数据的主要形式。权重矩阵和特征向量构成了神经网络的核心运算单元。通过矩阵乘法实现高效的前向传播计算,同时利用矩阵微分完成反向传播中的梯度计算。 #### 4. **偏导数与链式法则** 偏导数用于衡量目标函数相对于某个变量的变化率,这是梯度下降算法的关键部分。链式法则则允许我们高效地计算复合函数的导数,从而支持误差信号沿网络逐层传递。 #### 5. **多变量函数近似公式** 泰勒展开是一种重要的近似技术,它可以帮助理解复杂的非线性变换如何被分解成一系列简单的局部变化。这种思想贯穿于许多优化策略之中。 #### 6. **梯度下降法** 这是一种寻找最小值的经典数值方法,广泛应用于训练各种类型的机器学习模型。具体来说,随机梯度下降(SGD)以及它的变体(Adam, RMSProp 等)已经成为现代深度学习框架不可或缺的一部分。 #### 7. **误差反向传播** BP (Backpropagation) 是一种基于自动微分原理的技术,能够有效估计每一层权值对于最终预测错误的影响程度,并据此调整它们以改善整体表现。 #### 8. **卷积** 作为 CNN 的核心算子之一,卷积操作通过对图像或其他高维数据应用滑动窗口滤波器提取空间模式特征[^3]。 --- ### 补充说明 值得注意的是,尽管上述知识点覆盖了大部分实际应用场景所需的内容,但对于希望深入研究理论基础的研究者而言,还需要补充一些高级主题,例如概率统计、信息熵、图论等方面的知识[^2]。 ```python import numpy as np # 示例:简单的一阶导数计算 def derivative(f, x): h = 1e-4 return (f(x+h)-f(x-h))/(2*h) print("Slope at point:", derivative(lambda t:t**2, 3)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值