7-2 小波分析之信号离散采样与重构

7-2 小波分析之信号离散采样与重构

1. 香农(Shannon)采样定理

\qquad 任何离散信号都能表示成一系列 D i r a c Dirac Dirac脉冲信号的和 f d ( t ) = ∑ n = − ∞ + ∞ f ( n s ) δ ( t − n s ) f_d(t)=\sum_{n=-\infty}^{+\infty}f(ns)\delta(t-ns) fd(t)=n=+f(ns)δ(tns)其中 δ ( x ) = 0 , x ≠ 0. \delta(x)=0,x\neq0. δ(x)=0,x=0.由于 δ ( t − n s ) \delta(t-ns) δ(tns)的Fourier变换为 e − i n s ω e^{-ins\omega} einsω,故 f d f_d fd的Fourier变换为 f ^ d ( ω ) = ∑ n = − ∞ + ∞ f ( n s ) e − i n s ω = 1 s ∑ k = − ∞ + ∞ f ^ ( ω − 2 k π s ) (1) \hat f_d(\omega)=\sum_{n=-\infty}^{+\infty}f(ns)e^{-ins\omega}=\frac{1}{s}\sum_{k=-\infty}^{+\infty}\hat f(\omega-\frac{2k\pi}{s})\tag1 f^d(ω)=n=+f(ns)einsω=s1k=+f^(ωs2kπ)(1)
香农采样定理: 如果 f ^ \hat f f^的支集属于 [ − π / s , π / s ] [-\pi/s,\pi/s] [π/s,π/s],则 f ( t ) = ∑ n = − ∞ + ∞ f ( n s ) ϕ s ( t − n s ) (2) f(t)=\sum_{n=-\infty}^{+\infty}f(ns)\phi_s(t-ns)\tag2 f(t)=n=+f(ns)ϕs(tns)(2)其中 ϕ s ( t ) = s i n ( π t / s ) π t / s \phi_s(t)=\frac{sin(\pi t/s)}{\pi t/s} ϕs(t)=πt/ssin(πt/s).
证明:当 ∣ ω ∣ > π / s |\omega|>\pi/s ω>π/s f ^ ( ω ) = 0 \hat f(\omega)=0 f^(ω)=0,于是 f ^ ( ω − n π / s ) , f ^ ( ω ) \hat f(\omega-n\pi/s),\hat f(\omega) f^(ωnπ/s),f^(ω)的支集互不相交。故由(1)可得 f ^ ( d ) = f ^ ( ω ) s \hat f(d)=\frac{\hat f(\omega)}{s} f^(d)=sf^(ω),若 ∣ ω ∣ ≤ π / s |\omega|\leq\pi/s ωπ/s,又因为 ϕ ^ s ( ω ) = ∫ − ∞ + ∞ ϕ s ( t ) e − i ω t d t = ∫ − ∞ + ∞ s i n ( s t ) π t e − i ω t d t = s ⋅ 1 [ − π / s , π / s ] \hat\phi_s(\omega)=\int_{-\infty}^{+\infty}\phi_s(t)e^{-i\omega t}dt=\int_{-\infty}^{+\infty}\frac{sin(st)}{\pi t}e^{-i\omega t}dt=s\cdot1_{[-\pi/s,\pi/s]} ϕ^s(ω)=+ϕs(t)eiωtdt=+πtsin(st)eiωtdt=s1[π/s,π/s]于是 f ^ ( ω ) = f ^ d ( ω ) ϕ ^ s ( ω ) (3) \hat f(\omega)=\hat f_d(\omega)\hat\phi_s(\omega)\tag3 f^(ω)=f^d(ω)ϕ^s(ω)(3)由Fourier变换的性质(见上一篇文章)对(3)两端做Fourier变换有 f ( t ) = ϕ s ( t ) ∗ f d ( t ) = ϕ ( t ) ∗ ∑ n = − ∞ + ∞ f ( n s ) δ ( t − n s ) = ∑ n = − ∞ + ∞ f ( n s ) ϕ s ( t − s ) f(t)=\phi_s(t)*f_d(t)=\phi(t)*\sum_{n=-\infty}^{+\infty}f(ns)\delta(t-ns)=\sum_{n=-\infty}^{+\infty}f(ns)\phi_s(t-s) f(t)=ϕs(t)fd(t)=ϕ(t)n=+f(ns)δ(tns)=n=+f(ns)ϕs(ts)

2.正交基下的香农采样

\qquad 我们知道,当给定空间的一组基时,空间中的任意元素都能表示成这组基的线性组合。由(2)的形式,任意的 f f f都可以表示成采样点与 ϕ s ( t − n s ) \phi_s(t-ns) ϕs(tns)的线性组合,我们考虑以 ϕ s ( t − n s ) \phi_s(t-ns) ϕs(tns)为基的空间的 f f f重构问题。记 U s U_s Us { ϕ s ( t − n s ) } n ∈ Z \{\phi_s(t-ns)\}_{n\in Z} {ϕs(tns)}nZ张成的逼近空间。

  1. 线性采样:
    \qquad { ϕ s ( t − n s ) } n ∈ Z \{\phi_s(t-ns)\}_{n\in Z} {ϕs(tns)}nZ U s U_s Us的一个 R i e s z Riesz Riesz基,且 ϕ ˉ s ( t ) = ϕ s ( − t ) \bar\phi_s(t)=\phi_s(-t) ϕˉs(t)=ϕs(t),则存在 U s U_s Us的一个双正交基 { ϕ ~ s ( t − n s ) } n ∈ Z \{\widetilde\phi_s(t-ns)\}_{n\in Z} {ϕ s(tns)}nZ使得 P U s f ( t ) = ∑ − ∞ + ∞ f ∗ ϕ ˉ s ( n s ) ⋅ ϕ ~ s ( t − n s ) , ∀ f ∈ L 2 ( R ) P_{U_s}f(t)=\sum_{-\infty}^{+\infty}f*\bar\phi_s(ns)\cdot\widetilde\phi_s(t-ns),\quad\forall f\in L^2(R) PUsf(t)=+fϕˉs(ns)ϕ s(tns),fL2(R).
  2. 正交基
    \qquad 一个滤波器 ϕ s \phi_s ϕs可以生成空间 U s U_s Us的一组 R i e s z Riesz Riesz { ϕ s ( t − n s ) } n ∈ Z \{\phi_s(t-ns)\}_{n\in Z} {ϕs(tns)}nZ,当且仅当存在 B ≥ A > 0 B\geq A>0 BA>0,使得 A ≤ 1 s ∑ − ∞ + ∞ ∣ ϕ ^ ( ω − 2 k π s ) ∣ 2 ≤ B , ∀ ω ∈ [ 0 , 2 k π s ] A\leq\frac{1}{s}\sum_{-\infty}^{+\infty}\vert\hat\phi(\omega-\frac{2k\pi}{s})\vert^2\leq B,\quad \forall\omega\in[0,\frac{2k\pi}{s}] As1+ϕ^(ωs2kπ)2B,ω[0,s2kπ].
    \qquad ϕ s ( t ) = s 1 / 2 ϕ ( t / s ) \phi_s(t)=s^{1/2}\phi(t/s) ϕs(t)=s1/2ϕ(t/s)生成的族 { ϕ s ( t − n s ) } n ∈ Z \{\phi_s(t-ns)\}_{n\in Z} {ϕs(tns)}nZ U s U_s Us的一个正交基,当且仅当 ∑ − ∞ + ∞ ∣ ϕ ^ ( ω − 2 k π ) ∣ 2 = 1 , ∀ ω ∈ [ 0 , 2 π ] (4) \sum_{-\infty}^{+\infty}\vert\hat\phi(\omega-2k\pi)\vert^2=1,\quad\forall\omega\in[0,2\pi]\tag4 +ϕ^(ω2kπ)2=1,ω[0,2π](4)且对偶滤波器 ϕ ~ s = ϕ S \widetilde\phi_s=\phi_S ϕ s=ϕS.
  3. Shannon-whittaker 采样定理
    \qquad ϕ s ( t ) = s 1 / 2 s i n ( π s − 1 t ) π t \phi_s(t)=s^{1/2}\frac{sin(\pi s^{-1}t)}{\pi t} ϕs(t)=s1/2πtsin(πs1t) { ϕ s ( t − n s ) } n ∈ Z \{\phi_s(t-ns)\}_{n\in Z} {ϕs(tns)}nZ是一函数空间 U s U_s Us的正交基,该Fourier变换具有属于 [ − π / s , π / s ] [-\pi/s,\pi/s] [π/s,π/s]上的支集。若 f ∈ U s f\in U_s fUs,则 f ( n s ) = s 1 / 2 f ∗ ϕ s ( n s ) . f(ns)=s^{1/2}f*\phi_s(ns). f(ns)=s1/2fϕs(ns).
    证明:给定滤波器 ϕ s ( t ) = s − 1 / 2 s i n ( π s − 1 t ) π t \phi_s(t)=s^{-1/2}\frac{sin(\pi s^{-1}t)}{\pi t} ϕs(t)=s1/2πtsin(πs1t)其中 ϕ ( t ) = s i n π t π t \phi(t)=\frac{sin \pi t}{\pi t} ϕ(t)=πtsinπt,它的Fourier变化满足 ϕ ^ ( ω ) = 1 [ − π , π ] ( ω ) \hat\phi(\omega)=1_{[-\pi,\pi]}(\omega) ϕ^(ω)=1[π,π](ω)由(4)可得由 ϕ s ( t ) = s 1 / 2 ϕ ( t / s ) \phi_s(t)=s^{1/2}\phi(t/s) ϕs(t)=s1/2ϕ(t/s)生成的族 { ϕ s ( t − n s ) } n ∈ Z \{\phi_s(t-ns)\}_{n\in Z} {ϕs(tns)}nZ U s U_s Us的一个正交基。任意 f ( t ) = ∑ n = − ∞ + ∞ a [ n s ] ϕ s ( t − n s ) ∈ U s , ( a [ n s ] f(t)=\sum_{n=-\infty}^{+\infty}a[ns]\phi_s(t-ns)\in U_s,(a[ns] f(t)=n=+a[ns]ϕs(tns)Us,(a[ns] f f f在正交基下的系数)的Fourier变换可表示为 f ^ ( ω ) = ∑ n = − ∞ + ∞ a [ n s ] e − i n s ω ϕ ^ s ( ω ) = a ^ ( ω ) s 1 / 2 1 [ − π / s , π / s ] . \hat f(\omega)=\sum_{n=-\infty}^{+\infty}a[ns]e^{-ins\omega}\hat\phi_s(\omega)=\hat a(\omega)s^{1/2}1_{[-\pi/s,\pi/s]}. f^(ω)=n=+a[ns]einsωϕ^s(ω)=a^(ω)s1/21[π/s,π/s].这意味着 f ∈ U s f\in U_s fUsd的充要条件为 f f f的Fourier变换具有属于 [ − π / s , π / s ] [-\pi/s,\pi/s] [π/s,π/s]的支集,若 f ∈ U s f\in U_s fUs则利用 { ϕ s ( t − n s ) } n ∈ Z \{\phi_s(t-ns)\}_{n\in Z} {ϕs(tns)}nZ的正交分解得 f ( t ) = P U s f ( t ) = ∑ n ∈ Z < f ( u ) , ϕ s ( u − n s ) > ϕ s ( t − n s ) f(t)=P_{U_s}f(t)=\sum_{n\in Z}<f(u),\phi_s(u-ns)>\phi_s(t-ns) f(t)=PUsf(t)=nZ<f(u),ϕs(uns)>ϕs(tns) ϕ s ( n s ) = s − 1 / 2 δ [ n s ] \phi_s(ns)=s^{-1/2}\delta[ns] ϕs(ns)=s1/2δ[ns](注: δ [ n s ] \delta[ns] δ[ns]表示当 n s = 0 ns=0 ns=0时取1,其他情况取0)的定义及 ϕ s ( − t ) = ϕ s ( t ) \phi_s(-t)=\phi_s(t) ϕs(t)=ϕs(t)可得 f ( n s ) = s − 1 / 2 < f ( u ) , ϕ s ( u − n s ) > = s − 1 / 2 f ∗ ϕ s ( n s ) . f(ns)=s^{-1/2}<f(u),\phi_s(u-ns)>=s^{-1/2}f*\phi_s(ns). f(ns)=s1/2<f(u),ϕs(uns)>=s1/2fϕs(ns).
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值