7-2 小波分析之信号离散采样与重构
1. 香农(Shannon)采样定理
\qquad
任何离散信号都能表示成一系列
D
i
r
a
c
Dirac
Dirac脉冲信号的和
f
d
(
t
)
=
∑
n
=
−
∞
+
∞
f
(
n
s
)
δ
(
t
−
n
s
)
f_d(t)=\sum_{n=-\infty}^{+\infty}f(ns)\delta(t-ns)
fd(t)=n=−∞∑+∞f(ns)δ(t−ns)其中
δ
(
x
)
=
0
,
x
≠
0.
\delta(x)=0,x\neq0.
δ(x)=0,x=0.由于
δ
(
t
−
n
s
)
\delta(t-ns)
δ(t−ns)的Fourier变换为
e
−
i
n
s
ω
e^{-ins\omega}
e−insω,故
f
d
f_d
fd的Fourier变换为
f
^
d
(
ω
)
=
∑
n
=
−
∞
+
∞
f
(
n
s
)
e
−
i
n
s
ω
=
1
s
∑
k
=
−
∞
+
∞
f
^
(
ω
−
2
k
π
s
)
(1)
\hat f_d(\omega)=\sum_{n=-\infty}^{+\infty}f(ns)e^{-ins\omega}=\frac{1}{s}\sum_{k=-\infty}^{+\infty}\hat f(\omega-\frac{2k\pi}{s})\tag1
f^d(ω)=n=−∞∑+∞f(ns)e−insω=s1k=−∞∑+∞f^(ω−s2kπ)(1)
香农采样定理: 如果
f
^
\hat f
f^的支集属于
[
−
π
/
s
,
π
/
s
]
[-\pi/s,\pi/s]
[−π/s,π/s],则
f
(
t
)
=
∑
n
=
−
∞
+
∞
f
(
n
s
)
ϕ
s
(
t
−
n
s
)
(2)
f(t)=\sum_{n=-\infty}^{+\infty}f(ns)\phi_s(t-ns)\tag2
f(t)=n=−∞∑+∞f(ns)ϕs(t−ns)(2)其中
ϕ
s
(
t
)
=
s
i
n
(
π
t
/
s
)
π
t
/
s
\phi_s(t)=\frac{sin(\pi t/s)}{\pi t/s}
ϕs(t)=πt/ssin(πt/s).
证明:当
∣
ω
∣
>
π
/
s
|\omega|>\pi/s
∣ω∣>π/s时
f
^
(
ω
)
=
0
\hat f(\omega)=0
f^(ω)=0,于是
f
^
(
ω
−
n
π
/
s
)
,
f
^
(
ω
)
\hat f(\omega-n\pi/s),\hat f(\omega)
f^(ω−nπ/s),f^(ω)的支集互不相交。故由(1)可得
f
^
(
d
)
=
f
^
(
ω
)
s
\hat f(d)=\frac{\hat f(\omega)}{s}
f^(d)=sf^(ω),若
∣
ω
∣
≤
π
/
s
|\omega|\leq\pi/s
∣ω∣≤π/s,又因为
ϕ
^
s
(
ω
)
=
∫
−
∞
+
∞
ϕ
s
(
t
)
e
−
i
ω
t
d
t
=
∫
−
∞
+
∞
s
i
n
(
s
t
)
π
t
e
−
i
ω
t
d
t
=
s
⋅
1
[
−
π
/
s
,
π
/
s
]
\hat\phi_s(\omega)=\int_{-\infty}^{+\infty}\phi_s(t)e^{-i\omega t}dt=\int_{-\infty}^{+\infty}\frac{sin(st)}{\pi t}e^{-i\omega t}dt=s\cdot1_{[-\pi/s,\pi/s]}
ϕ^s(ω)=∫−∞+∞ϕs(t)e−iωtdt=∫−∞+∞πtsin(st)e−iωtdt=s⋅1[−π/s,π/s]于是
f
^
(
ω
)
=
f
^
d
(
ω
)
ϕ
^
s
(
ω
)
(3)
\hat f(\omega)=\hat f_d(\omega)\hat\phi_s(\omega)\tag3
f^(ω)=f^d(ω)ϕ^s(ω)(3)由Fourier变换的性质(见上一篇文章)对(3)两端做Fourier变换有
f
(
t
)
=
ϕ
s
(
t
)
∗
f
d
(
t
)
=
ϕ
(
t
)
∗
∑
n
=
−
∞
+
∞
f
(
n
s
)
δ
(
t
−
n
s
)
=
∑
n
=
−
∞
+
∞
f
(
n
s
)
ϕ
s
(
t
−
s
)
f(t)=\phi_s(t)*f_d(t)=\phi(t)*\sum_{n=-\infty}^{+\infty}f(ns)\delta(t-ns)=\sum_{n=-\infty}^{+\infty}f(ns)\phi_s(t-s)
f(t)=ϕs(t)∗fd(t)=ϕ(t)∗n=−∞∑+∞f(ns)δ(t−ns)=n=−∞∑+∞f(ns)ϕs(t−s)
2.正交基下的香农采样
\qquad 我们知道,当给定空间的一组基时,空间中的任意元素都能表示成这组基的线性组合。由(2)的形式,任意的 f f f都可以表示成采样点与 ϕ s ( t − n s ) \phi_s(t-ns) ϕs(t−ns)的线性组合,我们考虑以 ϕ s ( t − n s ) \phi_s(t-ns) ϕs(t−ns)为基的空间的 f f f重构问题。记 U s U_s Us为 { ϕ s ( t − n s ) } n ∈ Z \{\phi_s(t-ns)\}_{n\in Z} {ϕs(t−ns)}n∈Z张成的逼近空间。
- 线性采样:
\qquad 设 { ϕ s ( t − n s ) } n ∈ Z \{\phi_s(t-ns)\}_{n\in Z} {ϕs(t−ns)}n∈Z是 U s U_s Us的一个 R i e s z Riesz Riesz基,且 ϕ ˉ s ( t ) = ϕ s ( − t ) \bar\phi_s(t)=\phi_s(-t) ϕˉs(t)=ϕs(−t),则存在 U s U_s Us的一个双正交基 { ϕ ~ s ( t − n s ) } n ∈ Z \{\widetilde\phi_s(t-ns)\}_{n\in Z} {ϕ s(t−ns)}n∈Z使得 P U s f ( t ) = ∑ − ∞ + ∞ f ∗ ϕ ˉ s ( n s ) ⋅ ϕ ~ s ( t − n s ) , ∀ f ∈ L 2 ( R ) P_{U_s}f(t)=\sum_{-\infty}^{+\infty}f*\bar\phi_s(ns)\cdot\widetilde\phi_s(t-ns),\quad\forall f\in L^2(R) PUsf(t)=−∞∑+∞f∗ϕˉs(ns)⋅ϕ s(t−ns),∀f∈L2(R). - 正交基
\qquad 一个滤波器 ϕ s \phi_s ϕs可以生成空间 U s U_s Us的一组 R i e s z Riesz Riesz基 { ϕ s ( t − n s ) } n ∈ Z \{\phi_s(t-ns)\}_{n\in Z} {ϕs(t−ns)}n∈Z,当且仅当存在 B ≥ A > 0 B\geq A>0 B≥A>0,使得 A ≤ 1 s ∑ − ∞ + ∞ ∣ ϕ ^ ( ω − 2 k π s ) ∣ 2 ≤ B , ∀ ω ∈ [ 0 , 2 k π s ] A\leq\frac{1}{s}\sum_{-\infty}^{+\infty}\vert\hat\phi(\omega-\frac{2k\pi}{s})\vert^2\leq B,\quad \forall\omega\in[0,\frac{2k\pi}{s}] A≤s1−∞∑+∞∣ϕ^(ω−s2kπ)∣2≤B,∀ω∈[0,s2kπ].
\qquad 由 ϕ s ( t ) = s 1 / 2 ϕ ( t / s ) \phi_s(t)=s^{1/2}\phi(t/s) ϕs(t)=s1/2ϕ(t/s)生成的族 { ϕ s ( t − n s ) } n ∈ Z \{\phi_s(t-ns)\}_{n\in Z} {ϕs(t−ns)}n∈Z是 U s U_s Us的一个正交基,当且仅当 ∑ − ∞ + ∞ ∣ ϕ ^ ( ω − 2 k π ) ∣ 2 = 1 , ∀ ω ∈ [ 0 , 2 π ] (4) \sum_{-\infty}^{+\infty}\vert\hat\phi(\omega-2k\pi)\vert^2=1,\quad\forall\omega\in[0,2\pi]\tag4 −∞∑+∞∣ϕ^(ω−2kπ)∣2=1,∀ω∈[0,2π](4)且对偶滤波器 ϕ ~ s = ϕ S \widetilde\phi_s=\phi_S ϕ s=ϕS. - Shannon-whittaker 采样定理
\qquad 若 ϕ s ( t ) = s 1 / 2 s i n ( π s − 1 t ) π t \phi_s(t)=s^{1/2}\frac{sin(\pi s^{-1}t)}{\pi t} ϕs(t)=s1/2πtsin(πs−1t)则 { ϕ s ( t − n s ) } n ∈ Z \{\phi_s(t-ns)\}_{n\in Z} {ϕs(t−ns)}n∈Z是一函数空间 U s U_s Us的正交基,该Fourier变换具有属于 [ − π / s , π / s ] [-\pi/s,\pi/s] [−π/s,π/s]上的支集。若 f ∈ U s f\in U_s f∈Us,则 f ( n s ) = s 1 / 2 f ∗ ϕ s ( n s ) . f(ns)=s^{1/2}f*\phi_s(ns). f(ns)=s1/2f∗ϕs(ns).
证明:给定滤波器 ϕ s ( t ) = s − 1 / 2 s i n ( π s − 1 t ) π t \phi_s(t)=s^{-1/2}\frac{sin(\pi s^{-1}t)}{\pi t} ϕs(t)=s−1/2πtsin(πs−1t)其中 ϕ ( t ) = s i n π t π t \phi(t)=\frac{sin \pi t}{\pi t} ϕ(t)=πtsinπt,它的Fourier变化满足 ϕ ^ ( ω ) = 1 [ − π , π ] ( ω ) \hat\phi(\omega)=1_{[-\pi,\pi]}(\omega) ϕ^(ω)=1[−π,π](ω)由(4)可得由 ϕ s ( t ) = s 1 / 2 ϕ ( t / s ) \phi_s(t)=s^{1/2}\phi(t/s) ϕs(t)=s1/2ϕ(t/s)生成的族 { ϕ s ( t − n s ) } n ∈ Z \{\phi_s(t-ns)\}_{n\in Z} {ϕs(t−ns)}n∈Z是 U s U_s Us的一个正交基。任意 f ( t ) = ∑ n = − ∞ + ∞ a [ n s ] ϕ s ( t − n s ) ∈ U s , ( a [ n s ] f(t)=\sum_{n=-\infty}^{+\infty}a[ns]\phi_s(t-ns)\in U_s,(a[ns] f(t)=∑n=−∞+∞a[ns]ϕs(t−ns)∈Us,(a[ns]为 f f f在正交基下的系数)的Fourier变换可表示为 f ^ ( ω ) = ∑ n = − ∞ + ∞ a [ n s ] e − i n s ω ϕ ^ s ( ω ) = a ^ ( ω ) s 1 / 2 1 [ − π / s , π / s ] . \hat f(\omega)=\sum_{n=-\infty}^{+\infty}a[ns]e^{-ins\omega}\hat\phi_s(\omega)=\hat a(\omega)s^{1/2}1_{[-\pi/s,\pi/s]}. f^(ω)=n=−∞∑+∞a[ns]e−insωϕ^s(ω)=a^(ω)s1/21[−π/s,π/s].这意味着 f ∈ U s f\in U_s f∈Usd的充要条件为 f f f的Fourier变换具有属于 [ − π / s , π / s ] [-\pi/s,\pi/s] [−π/s,π/s]的支集,若 f ∈ U s f\in U_s f∈Us则利用 { ϕ s ( t − n s ) } n ∈ Z \{\phi_s(t-ns)\}_{n\in Z} {ϕs(t−ns)}n∈Z的正交分解得 f ( t ) = P U s f ( t ) = ∑ n ∈ Z < f ( u ) , ϕ s ( u − n s ) > ϕ s ( t − n s ) f(t)=P_{U_s}f(t)=\sum_{n\in Z}<f(u),\phi_s(u-ns)>\phi_s(t-ns) f(t)=PUsf(t)=n∈Z∑<f(u),ϕs(u−ns)>ϕs(t−ns)由 ϕ s ( n s ) = s − 1 / 2 δ [ n s ] \phi_s(ns)=s^{-1/2}\delta[ns] ϕs(ns)=s−1/2δ[ns](注: δ [ n s ] \delta[ns] δ[ns]表示当 n s = 0 ns=0 ns=0时取1,其他情况取0)的定义及 ϕ s ( − t ) = ϕ s ( t ) \phi_s(-t)=\phi_s(t) ϕs(−t)=ϕs(t)可得 f ( n s ) = s − 1 / 2 < f ( u ) , ϕ s ( u − n s ) > = s − 1 / 2 f ∗ ϕ s ( n s ) . f(ns)=s^{-1/2}<f(u),\phi_s(u-ns)>=s^{-1/2}f*\phi_s(ns). f(ns)=s−1/2<f(u),ϕs(u−ns)>=s−1/2f∗ϕs(ns).