AI可解释性主体

一、AI可解释性

1.什么是可解释性?

可解释性,就是我们需要完成一件事的时候,我们能获取到的足够多的,能让我们自己理解的信息。当我们不能获得足够多的信息,来理解一件事情的时候,我们可以说这是不可解释的。所以,解释性的目的就是以人的思维来理解事物,让人能懂。但是在深度学习模型中,建立模型的时候往往没有考虑到它的可解释性,特别是在深层网络中,我们不知道它是怎么运作的,我们没有足够信息来处理为何模型得出这样的结果。所以我们认为深度学习的模型是一个黑箱,我们知道它的结构,但是我们不知道它为何会产生这样的结果。

2.为什么要研究AI的可解释性?

如前所述,AI是一个“黑箱”,我们并不知道是哪一部分输入影响了它产生我们希望得到的结果。贝叶斯网络的制造者Pearl说过:“几乎所有的深度学习突破性的本质上来说都只是些曲线拟合罢了。” 特别是在监督学习中,我们需要训练模型,接着验证模型,再测试模型,接着进行不断地优化,调参,在不发生过拟合的情况下让模型尽可能地拟合数据。这个过程中,我们甚至不知道是哪个参数合适,只能根据经验设置参数数值,然后像玩猜数字游戏一样,不断接近那个最佳值。我们调整它们的唯一依据,就是输出结果,训练了几天几个月的模型可能因为调参,又需要重新开始训练。这是极度浪费时间和精力的,特别是在需要进行快速商业化的今天,时间是十分宝贵的。因此,我们迫切需要一个可以指导我们设置参数,评估模型的哪一部分,哪些数据对模型结果的影响最大,或者左右了结果产生的说明。这就是可解释性在AI中发挥的作用,它就像一本指导手册,它可以让这个“黑箱”更加透明。

3.可解释性的方法

解释模型的方法分为建立模型前的方法,建立模型时的方法,和建立模型后的方法。建立模型前,我们可以将数据可视化,让数据更加直观地展现在人的眼前,也可以使用样本数据探索,这样对样本的了解更加确切。建模中可以基于目前一些具有可解释性的方法建立模型,这样建立的模型它本身就具有可解释性,但是这样方法局限于它自身的结构特点,无法应用于复杂的深度学习网络模型。在应用中,我们往往会不考虑可解释性来建立模型,这样更加灵活多变。这导致了建立深度学习网络模型成为“黑箱”的可能性增加,以至于大部分都是“黑箱”。建模后的解释方法,是根据已有的模型进行解释,这和数据拟合很相似,我们总是去寻找这样的方法来解释未知的问题。不论是建模前,建模中,还是建模后的方法,它们都会输出结果,这个结果就是我们的评估模型可解释的指标。

二、建模前

建模前通过数据可视化或者样本数据探索,可以直观地了解到数据对描述事实的准确程度,判断数据是否适合建模,数据内部的关联程度和数据样本的特征。通过常用的数据分析方式,比如方差分析,假设检验,相关性分析,回归分析,因子分析等,描述数据样本的趋势,离散程度,为确定建模方法提供依据。
需要将数据可视化,然后初步分析数据的质量,从中筛选或者调整数据以供后续继续进行样本数据探索,找到合适建模的数据。

三、建模中

建模中可以使用一些具有自解释性的方法建立可解释的模型,比如基于规则的方法,基于单个特征,基于单调性等。不管如何,他们都具有复杂度。复杂度是深度学习模型自身固有的特点,它包含时间和空间复杂度,对应于计算量(模型运算次数)和访存量(模型参数数量)。

1.为何已建立的深度学习模型难以解释?

可解释性差是深度学习的最大缺陷之一。对于大部分的深度学习模型,它们在建立的时候,就没考虑模型的可解释性,甚至有的网络的建立仅凭靠建模者的直觉,所以目前还没有出现统一的指标来解释为何如此建立模型,建模依据可能都无法提供。对于神经网络来说,它的结构复杂,参数众多(有的可以多达几十亿参数),我们无法知晓数据在模型中为何会被选择或者如何被改变。比如Inception网络,我们不知道数据适合采用哪一方式来建立神经网络,不知道何时采取池化,何时要卷积,所以在inception网络里,我们把所有的条件都给了,让数据来自己选择是池化还是卷积,我们甚至都不知道为何在某一部分结构中池化起主导作用,而在另一部分卷积起主导作用。神经网络经过训练,为何会选择这些数值作为参数,它们对整个网络的贡献值有多大,我们都不知道。这就是为什么深度学习模型那么难解释,以至于大部分模型都只能看作是黑箱,依靠建模后的方法来对模型进行解释,进行可解释性评估。

我们可能暂时无法对既定模型进行解释,但是在新建立模型的时候,我们可以依据一些方法,建立本身具有可解释性的模型。这类方法大致分为:基于规则的方法(Rule-based),基于单个特征的方法(Per-feature-based),基于实例的方法(Case-based),稀疏性方法(Sparsity),单调性方法(Monotonicity),它们本身拥有很好的解释性。

怎么在模型上运用可解释性

这部分主要是把可解释性运用到已有的模型中,我们在这个阶段研究的不够透彻,目前知道的模型的共同特征是复杂度以及层数,结构等固有特征。不详写。

四、建模后的评估方法优劣及其评价指标

对于所有的监督学习模型,我们有准确率,检错率等等指标来区分模型的优劣,但是它们并不能为模型提供一个好的解释,所以还需要其他解释办法,使得黑盒变得更加透明,目前主要的有PDP,ICE,ALE,FI、PFI等能为模型提供解释,它们不依赖于模型,所以拥有很大的灵活性,但是也导致了解释不够精确。
这些方法只为我们提供了参考,不能依靠其中某一项来评价模型,需要多项参考一起进行。它们都是与模型无关的方法,所以我们可以不考虑原模型的内部结构。

以下主要阐述各个方法实现规则和数学原理

五、解释性评价

这部分主要是客观和主观评价,定性与定量评价。

英文版一级目录包括但不限于:Introduction,Scope,Terms and definitions,Reference architecture,Explanation Assessment
具体还得等到最终确定方案并被采纳才能放出全部内容。相关工作还在进行中。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值