sklearn
卜若
love game,love life
展开
-
卜若的代码笔记-sklearn-第四章:knn(4)-结果统计:计算p值,r值,f1值,accuracy值
from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score #对15个测试数据进行预测的结果 predict=[0,2,1,0,1,2,1,1,2,1,2,2,0,0,1] #测试数据正确的标签 realLabel=[0,2,1,0,.原创 2020-06-09 14:25:45 · 1433 阅读 · 0 评论 -
卜若的代码笔记-sklearn-第三章:knn(3)-对数据进行十则交叉划分
1.主要使用sklearn的KFolder工具 from sklearn.model_selection import KFold import numpy as np data = np.array([['王大'], ['王二'], ['王三'], ['王四'],['王五'],['王六'],['王七'],['王八'],['王九'],['王十']]) label = np.array([1, 2, 3, 4,5,6,7,8,9,10]) kf = KFold(n_splits=10) num = kf原创 2020-06-09 14:07:48 · 248 阅读 · 0 评论 -
卜若的代码笔记-sklearn-第二章:knn(2)-对训练集进行打乱处理
1.对数据集打乱是个很重要的课题,在sklearn里面提供了置乱的函数,我这里提供一个简单的例子: import numpy as np from sklearn.utils import shuffle data = np.array([['王大'], ['王二'], ['王三'], ['王四'],['王五'],['王六'],['王七'],['王八'],['王九'],['王十']]) label = np.array([1, 2, 3, 4,5,6,7,8,9,10]) data,label =.原创 2020-06-09 14:05:01 · 393 阅读 · 0 评论 -
卜若的代码笔记-sklearn-第一章:knn(1)-最简单的knn案例
1.官方文档,如果你英语不错,可以直接啃API,如果英语一般就跟我走吧 sklearn文档 2.第一个sklearn的demo:knn 在knn的学习中,我们学会了knn算法的思想,在这一部分里面,我们将学会怎么去调用sklearn提供的工具去实现它 from sklearn.neighbors import KNeighborsClassifier as knnModel import numpy as np #训练数据 x = [[0], [1], [2], [3]] #训练数据的标.原创 2020-06-09 12:33:51 · 197 阅读 · 0 评论