理论力学中的 动量定理、动量矩定理、动能定理

1. 质点的动量定理
(mv)' = F
质点动量对时间的变化率等于质点所受的力
(mv)2 - (mv)1 = I
质点动量的增量等于质点所受的力的冲量

2.1 质点系的动量定理
每个质点的动量的变化率 等于 所受的内力与外力之和   (mivi)' = Fi+Fi*    式1     注:Fi*表示第i个质点受到的内力
质点系 就是对式1求和,质点系的内力为0   则Σ(mivi)' = ΣFi  式2

质点系的动量定理:质点系所受外力的矢量和 等于 质点系动量的变量率

将式2积分,得 [Σ(mivi)]2 - [Σ(mivi)]1 = ΣIi   表示t2时刻的质点系动量 减去 t1时刻的质点系动量
质点系的动量定理/冲量定理:质点系所受外力的冲量的矢量和 等于 质点系动量的增量

这是微分与积分下的两种表达方式。

2.2 质点系的动量守恒定理
(mv)' = ΣFi 
ΣFi = 0 则 mv = C

质点系的动量守恒定理:质点系所受外力的矢量和为0 则质点系的动量守恒。 也可以说质点系所受外力的冲量的矢量和为0 则质点系动量守恒。

注:dI = Fdt

2.3 质心运动定理
Σ(mivi)' = ΣFi = a*Σmi
质点系的动量 等于 质点系质量与其质心加速度的乘积

注:只有外力才能使质心的运动发生改变。但外力 与 内力 都会使其他质点的运动发生改变。

======================================================

1.1 质点A对固定点O的动量矩
Lo = rXmv   方向:位矢 叉乘 速度

1.2 质点A对过O点的Z轴的动量矩
(Lo)z = Lz   质点A对O点的动量矩在Z轴的投影 等于 质点A对Z轴的动量矩

1.3 质点的动量矩定理
(Lx)' = Mx    (Ly)' = My   (Lz)' = Mz
质点动量对任一固定轴的矩 随时间的变化率 等于 该质点所受的力对该固定轴的矩
(Lo)' = Mo
质点动量对任一固定点的矩 随时间的变化率 等于 该质点所受的力对该固定点的矩

1.4 质点的动量矩守恒定理
质点A所受的力对固定轴x的力矩为0 则质点A对固定轴x的 动量矩守恒
质点A所受的力对固定点o的力矩为0  则质点A对固定点o的 动量矩守恒

2.1 质点系的动量矩定理
质点系动量对任一固定轴的矩 随时间的变化率 等于 质点系所受的外力对该固定轴的矩的矢量和
质点系动量对任一固定点的矩 随时间的变化率 等于 质点系所受的外力对该固定点的矩的矢量和
注:只有针对质点系才有内力与外力一说,内力指质点与质点之间的相互作用力。

2.2 质点系的动量矩守恒定理
质点系的外力对固定轴x的力矩为0 则质点系对固定轴x的 动量矩守恒
质点系的外力对固定点o的力矩为0 则质点系对固定点o的 动量矩守恒

3.1 定轴转动刚体对转轴的动量矩
Lx = Jx*w

3.2 平行轴定理
注:类比于面积惯性矩
Jz' = Jz + mh**2
刚体对z‘轴的转动惯量 等于 刚体对于z’平行且过其质心的z轴的转动惯量 + 两平行轴之间的距离h的平方乘以刚体质量

================================================

1.1 力的元功
d'W = F*dr  力矢 点乘 元位移
元功是一个标量

1.2 质点系内力功
刚体内力的功一般不为0

2.1 质点动能定理
dT = d'W
质点动能的微分等于所受力的元功

T2 - T1 = W
质点动能的增量等于所受力在此过程做的功

2.2 质点系动能定理
质点系动能的增量等于所受内力与外力在此过程做的功的代数和
 

=============================================

对比:
冲量 Fdt    功 Fdr  前者是F在时间的累积,后者是F在空间的累积
动能、功是标量,动量、冲量是矢量,动能、动量是状态量,功、冲量是过程量
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值