质点系的角动量与角动量定理

质点系的角动量

  考察由 n n n个质点组成的质点系,设质点系中质点 P i P_i Pi的质量为 m i m_{i} mi,相对于惯性坐标系原点 O O O点的矢径为 r i \boldsymbol{r}_{i} ri,速度为 v i = d r i / d t \boldsymbol{v}_{i}=\mathrm{d} \boldsymbol{r}_{i} / \mathrm{d} t vi=dri/dt,则质点系对点 O O O的角动量为定义为:
L O = ∑ i = 1 n r i × m i v i (1) \boldsymbol{L}_{O}=\sum_{i=1}^{n} \boldsymbol{r}_{i} \times m_{i} \boldsymbol{v}_{i}{\tag1} LO=i=1nri×mivi(1)

注意:角动量是矢量,它与矩心 O O O的选择有关。因此在描述角动量时,必须说明对哪一点的角动量。
图1

(图1)

  下面讨论质点系对任意两点 O O O A A A动量矩 L O \boldsymbol{L}_{O} LO L A \boldsymbol{L}_{A} LA的关系。如图1所示,质点 A A A在参考坐标系 O x y z Oxyz Oxyz中的矢径为 r O A \boldsymbol{r}_{O A} rOA,质点 P i P_i Pi相对于 A A A的矢径为 ρ i \boldsymbol{\rho}_{i} ρi,因此质点 P i P_i Pi的矢径 r i \boldsymbol{r}_{i} ri可以表示为
r i = r O A + ρ i (2) \boldsymbol{r}_{i}=\boldsymbol{r}_{O A}+\boldsymbol{\rho}_{i}{\tag2} ri=rOA+ρi(2)

将上式带入,可得
L O = ∑ i = 1 n r i × m i v i = ∑ i = 1 n ρ i × m i v i + r O A × ∑ i = 1 n m i v i (3) \boldsymbol{L}_{O}=\sum_{i=1}^{n} \boldsymbol{r}_{i} \times m_{i} \boldsymbol{v}_{i}=\sum_{i=1}^{n} \boldsymbol{\rho}_{i} \times m_{i} \boldsymbol{v}_{i}+\boldsymbol{r}_{O A} \times \sum_{i=1}^{n} m_{i} \boldsymbol{v}_{i}{\tag3} LO=i=1nri×mivi=i=1nρi×mivi+rOA×i=1nmivi(3)

其中第一项是质点系对A点的动量矩 L A \boldsymbol{L}_{A} LA,因此上式可写为
L O = L A + r O A × p (4) \boldsymbol{L}_{O}=\boldsymbol{L}_{A}+\boldsymbol{r}_{O A} \times \boldsymbol{p}{\tag4} LO=LA+rOA×p(4)

如果将点A取为质心C,则由上式得
L O = L C + r O C × p = L C + r O C × m v C (5) \boldsymbol{L}_{O}=\boldsymbol{L}_{C}+\boldsymbol{r}_{O C} \times \boldsymbol{p}=\boldsymbol{L}_{C}+\boldsymbol{r}_{O C} \times m \boldsymbol{v}_{C}{\tag5} LO=LC+rOC×p=LC+rOC×mvC(5)

(图2)

  式(5)利用各质点的绝对速度 v i \boldsymbol{v}_{i} vi来计算质点系对质心的动量矩 L C \boldsymbol{L}_{C} LC的。下面证明,质点系对于质心的动量矩也可以用相对质心平动参考系的速度计算。首先,引入质心平动坐标系 C x ′ y ′ z ′ C x^{\prime} y^{\prime} z^{\prime} Cxyz,如图2所示。设质心 C C C的速度为 v C \boldsymbol{v}_{C} vC,质点 P i P_i Pi的绝对速度为 v i \boldsymbol{v}_{i} vi相对于质心平动系 C x ′ y ′ z ′ C x^{\prime} y^{\prime} z^{\prime} Cxyz的速度 v i r = v i − v C \boldsymbol{v}_{i \mathbf{r}}=\boldsymbol{v}_{\boldsymbol{i}}-\boldsymbol{v}_{\boldsymbol{C}} vir=vivC。于是,质点系对质心的动量矩 L C \boldsymbol{L}_{C} LC
L C = ∑ i = 1 n ρ i × m i v i = ∑ i = 1 n ρ i × m i v C + ∑ i = 1 n ρ i × m i v i r (6) \boldsymbol{L}_{C}=\sum_{i=1}^{n} \boldsymbol{\rho}_{i} \times m_{i} \boldsymbol{v}_{i}=\sum_{i=1}^{n} \boldsymbol{\rho}_{i} \times m_{i} \boldsymbol{v}_{C}+\sum_{i=1}^{n} \boldsymbol{\rho}_{i} \times m_{i} \boldsymbol{v}_{i \mathbf{r}}{\tag6} LC=i=1nρi×mivi=i=1nρi×mivC+i=1nρi×mivir(6)

由质心的定义有
∑ i = 1 n m i ρ i = m ρ C (7) \sum_{i=1}^{n} m_{i} \boldsymbol{\rho}_{i}=m \boldsymbol{\rho}_{C} {\tag7} i=1nmiρi=mρC(7)

其中 m m m为质点系的总质量, ρ C \boldsymbol{\rho}_{C} ρC为质心 C C C在质心平动参考系 C x ′ y ′ z ′ C x^{\prime} y^{\prime} z^{\prime} Cxyz中的矢径,显然 ρ C = 0 \boldsymbol{\rho}_{C}=0 ρC=0。故有 L C = L C r = ∑ i = 1 n ρ i × m i v i r (8) \boldsymbol{L}_{C}=\boldsymbol{L}_{C_{\mathrm{r}}}=\sum_{i=1}^{n} \boldsymbol{\rho}_{i} \times m_{i} \boldsymbol{v}_{i \mathbf{r}}{\tag8} LC=LCr=i=1nρi×mivir(8)

质点系的动量矩定理

  令 O O O为固定点, O x y z Oxyz Oxyz为惯性系, A A A为惯性系中的任意点,其绝对速度为 v A \boldsymbol{v}_A vA。将质点系对 A A A的动量矩 L A = ∑ i = 1 n ρ i × m i v i \boldsymbol{L}_{\boldsymbol{A}}=\sum_{i=1}^{n} \boldsymbol{\rho}_{\boldsymbol{i}} \times \boldsymbol{m}_{\boldsymbol{i}} \boldsymbol{v}_{\boldsymbol{i}} LA=i=1nρi×mivi对时间求一阶导数,得
d L A d t = ∑ i = 1 n d ρ i d t × m i v i + ∑ i = 1 n ρ i × m i a i (9) \frac{\mathrm{d} \boldsymbol{L}_{\boldsymbol{A}}}{\mathrm{d} t}=\sum_{i=1}^{n} \frac{\mathrm{d} \boldsymbol{\rho}_{\boldsymbol{i}}}{\mathrm{d} t} \times m_{i} \boldsymbol{v}_{i}+\sum_{i=1}^{n} \boldsymbol{\rho}_{i} \times m_{i} \boldsymbol{a}_{i}{\tag9} dtdLA=i=1ndtdρi×mivi+i=1nρi×miai(9)

由牛顿第二定理得
m i a i = F i ( i ) + F i ( e ) (10) m_{i} \boldsymbol{a}_{i}=\boldsymbol{F}_{i}^{(\mathrm{i})}+\boldsymbol{F}_{i}^{(\mathrm{e})}{\tag{10}} miai=Fi(i)+Fi(e)(10)

质点系中内力总是成对出现的。且大小相等,方向相反,因此内力系对任意点的主矩为零,即 M A ( i ) = ∑ i = 1 n ρ i × F i ( i ) = 0 \boldsymbol{M}_{A}^{(\mathrm{i})}=\sum_{i=1}^{n} \boldsymbol{\rho}_{i} \times \boldsymbol{F}_{i}^{(\mathrm{i})}=0 MA(i)=i=1nρi×Fi(i)=0。于是式(9)右端的第二项正是作用在质点系上外力对 A A A点的主炬
M A ( e ) = ∑ i = 1 n ρ i × F i ( e ) (11) \boldsymbol{M}_{A}^{(\mathrm{e})}=\sum_{i=1}^{n} \boldsymbol{\rho}_{i} \times \boldsymbol{F}_{i}^{(\mathrm{e})}{\tag{11}} MA(e)=i=1nρi×Fi(e)(11)

将式(11)两边对时间求一阶导数得 d ρ i d t = v i − v A (12) \frac{\mathrm{d} \rho_{i}}{\mathrm{d} t}=\boldsymbol{v}_{i}-\boldsymbol{v}_{\boldsymbol{A}}{\tag{12}} dtdρi=vivA(12)

带入式,考虑到 v i × v i = 0 \boldsymbol{v}_{\boldsymbol{i}} \times \boldsymbol{v}_{\boldsymbol{i}}=0 vi×vi=0,可得 d L A d t = M A ( e ) + m v C × v A (13) \frac{\mathrm{d} \boldsymbol{L}_{A}}{\mathrm{d} t}=\boldsymbol{M}_{A}^{(\mathrm{e})}+m \boldsymbol{v}_{C} \times \boldsymbol{v}_{A}{\tag{13}} dtdLA=MA(e)+mvC×vA(13)

可见,质点系动量矩的变化仅取决于外力的主矩(这个字针对内力而言)。根据公式,变化还取决于表征质点系运动的交叉项。
  下面介绍两种特殊情况:

  1. 如果点 A A A为固定点,即 v A = 0 \boldsymbol{v}_{A}=\mathbf{0} vA=0,则由式(13)得:
    d L A d t = M A ( e ) (14) \frac{\mathrm{d} \boldsymbol{L}_{A}}{\mathrm{d} t}=\boldsymbol{M}_{\boldsymbol{A}}^{(\mathrm{e})} {\tag{14}} dtdLA=MA(e)(14)

这就是质点系对固定点的动量矩定理。以A为原点建立直角坐标系 A x y z Axyz Axyz,则有
d L x d t = M x ( e ) d L y d t = M y ( e ) d L z d t = M z ( e ) (15) \begin{aligned} &\frac{\mathrm{d} L_{x}}{\mathrm{d} t}=M_{x}^{(\mathrm{e})}\\ &\frac{\mathrm{d} L_{y}}{\mathrm{d} t}=M_{y}^{(\mathrm{e})}\\ &\frac{\mathrm{d} L_{z}}{\mathrm{d} t}=M_{z}^{(\mathrm{e})} \end{aligned}{\tag{15}} dtdLx=Mx(e)dtdLy=My(e)dtdLz=Mz(e)(15)

其中 M x ( e ) M_{x}^{(\mathrm{e})} Mx(e), M y ( e ) M_{y}^{(\mathrm{e})} My(e), M z ( e ) M_{z}^{(\mathrm{e})} Mz(e)分别为外力对 x x x轴, y y y轴, z z z轴之矩。 L x L_{x} Lx, L y L_{y} Ly, L z L_{z} Lz 分别为质点系对 x x x轴、 y y y轴和 z z z轴的动量矩。
如果外力对A点的主矩为零,则由式(14) 可知,质点系动矩守恒。如果作用于质点系上的外力对某定轴的矩为零,则质点系对该轴的动量矩守恒。

  1. 如果点A为质点系的质心C,则由式(13) 可得
    d L C d t = M C ( o ) (16) \frac{\mathrm{d} \boldsymbol{L}_{C}}{\mathrm{d} t}=\boldsymbol{M}_{C}^{(\mathrm{o})}{\tag{16}} dtdLC=MC(o)(16)

将式(8)带入上式,可得
d L C r d t = M C ( e ) (17) \frac{\mathrm{d} \boldsymbol{L}_{C \mathrm{r}}}{\mathrm{d} t}=\boldsymbol{M}_{C}^{(\mathrm{e})}{\tag{17}} dtdLCr=MC(e)(17)

这两个式子是质点系对质心的动量矩定理。可以看出,它们与质点系对固定点的动量矩定理形式完全一致。当外力对质心的主矩为零时,质点系对质心的动量矩守恒。

注释:

  • 本文动量矩的定义是绝对线动量对于矩心的矩之和,即定义式中叉乘的是质量微元的绝对速度,参考文献[1],[3]都采用这种定义方法。参考文献[2]采用相对动量矩的定义方法,即叉乘的是相对于矩心的速度。[3]对于绝对和相对角动量有清晰的描述。当然,当矩心为质心时,二者相等,且满足欧拉公式。
  • 动量矩定理的公式(13)是一般情况,对参考点无任何限制,等式右边有质心和矩心速度叉乘这一项目。公式(14)和(16)被称为欧拉公式,分别对应着矩心为固定点以及为矩心为质心两种特殊情况。只有这两种情况下,才没有叉乘项。只有在上述两种情况下,合外力对质心主矩为零时,角动量才守恒。(否则根据公式(13),由于等式右端还有叉乘项,角速度的导数不为零)

参考文献:

  1. Orbital mechanics for engineering students
  2. Analytical mechanics of space system
  3. 理论力学 李俊峰 张雄
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值