质点系的角动量
考察由
n
n
n个质点组成的质点系,设质点系中质点
P
i
P_i
Pi的质量为
m
i
m_{i}
mi,相对于惯性坐标系原点
O
O
O点的矢径为
r
i
\boldsymbol{r}_{i}
ri,速度为
v
i
=
d
r
i
/
d
t
\boldsymbol{v}_{i}=\mathrm{d} \boldsymbol{r}_{i} / \mathrm{d} t
vi=dri/dt,则质点系对点
O
O
O的角动量为定义为:
L
O
=
∑
i
=
1
n
r
i
×
m
i
v
i
(1)
\boldsymbol{L}_{O}=\sum_{i=1}^{n} \boldsymbol{r}_{i} \times m_{i} \boldsymbol{v}_{i}{\tag1}
LO=i=1∑nri×mivi(1)
注意:角动量是矢量,它与矩心
O
O
O的选择有关。因此在描述角动量时,必须说明对哪一点的角动量。
下面讨论质点系对任意两点
O
O
O和
A
A
A动量矩
L
O
\boldsymbol{L}_{O}
LO和
L
A
\boldsymbol{L}_{A}
LA的关系。如图1所示,质点
A
A
A在参考坐标系
O
x
y
z
Oxyz
Oxyz中的矢径为
r
O
A
\boldsymbol{r}_{O A}
rOA,质点
P
i
P_i
Pi相对于
A
A
A的矢径为
ρ
i
\boldsymbol{\rho}_{i}
ρi,因此质点
P
i
P_i
Pi的矢径
r
i
\boldsymbol{r}_{i}
ri可以表示为
r
i
=
r
O
A
+
ρ
i
(2)
\boldsymbol{r}_{i}=\boldsymbol{r}_{O A}+\boldsymbol{\rho}_{i}{\tag2}
ri=rOA+ρi(2)
将上式带入,可得
L
O
=
∑
i
=
1
n
r
i
×
m
i
v
i
=
∑
i
=
1
n
ρ
i
×
m
i
v
i
+
r
O
A
×
∑
i
=
1
n
m
i
v
i
(3)
\boldsymbol{L}_{O}=\sum_{i=1}^{n} \boldsymbol{r}_{i} \times m_{i} \boldsymbol{v}_{i}=\sum_{i=1}^{n} \boldsymbol{\rho}_{i} \times m_{i} \boldsymbol{v}_{i}+\boldsymbol{r}_{O A} \times \sum_{i=1}^{n} m_{i} \boldsymbol{v}_{i}{\tag3}
LO=i=1∑nri×mivi=i=1∑nρi×mivi+rOA×i=1∑nmivi(3)
其中第一项是质点系对A点的动量矩
L
A
\boldsymbol{L}_{A}
LA,因此上式可写为
L
O
=
L
A
+
r
O
A
×
p
(4)
\boldsymbol{L}_{O}=\boldsymbol{L}_{A}+\boldsymbol{r}_{O A} \times \boldsymbol{p}{\tag4}
LO=LA+rOA×p(4)
如果将点A取为质心C,则由上式得
L
O
=
L
C
+
r
O
C
×
p
=
L
C
+
r
O
C
×
m
v
C
(5)
\boldsymbol{L}_{O}=\boldsymbol{L}_{C}+\boldsymbol{r}_{O C} \times \boldsymbol{p}=\boldsymbol{L}_{C}+\boldsymbol{r}_{O C} \times m \boldsymbol{v}_{C}{\tag5}
LO=LC+rOC×p=LC+rOC×mvC(5)
式(5)利用各质点的绝对速度
v
i
\boldsymbol{v}_{i}
vi来计算质点系对质心的动量矩
L
C
\boldsymbol{L}_{C}
LC的。下面证明,质点系对于质心的动量矩也可以用相对质心平动参考系的速度计算。首先,引入质心平动坐标系
C
x
′
y
′
z
′
C x^{\prime} y^{\prime} z^{\prime}
Cx′y′z′,如图2所示。设质心
C
C
C的速度为
v
C
\boldsymbol{v}_{C}
vC,质点
P
i
P_i
Pi的绝对速度为
v
i
\boldsymbol{v}_{i}
vi,相对于质心平动系
C
x
′
y
′
z
′
C x^{\prime} y^{\prime} z^{\prime}
Cx′y′z′的速度
v
i
r
=
v
i
−
v
C
\boldsymbol{v}_{i \mathbf{r}}=\boldsymbol{v}_{\boldsymbol{i}}-\boldsymbol{v}_{\boldsymbol{C}}
vir=vi−vC。于是,质点系对质心的动量矩
L
C
\boldsymbol{L}_{C}
LC为
L
C
=
∑
i
=
1
n
ρ
i
×
m
i
v
i
=
∑
i
=
1
n
ρ
i
×
m
i
v
C
+
∑
i
=
1
n
ρ
i
×
m
i
v
i
r
(6)
\boldsymbol{L}_{C}=\sum_{i=1}^{n} \boldsymbol{\rho}_{i} \times m_{i} \boldsymbol{v}_{i}=\sum_{i=1}^{n} \boldsymbol{\rho}_{i} \times m_{i} \boldsymbol{v}_{C}+\sum_{i=1}^{n} \boldsymbol{\rho}_{i} \times m_{i} \boldsymbol{v}_{i \mathbf{r}}{\tag6}
LC=i=1∑nρi×mivi=i=1∑nρi×mivC+i=1∑nρi×mivir(6)
由质心的定义有
∑
i
=
1
n
m
i
ρ
i
=
m
ρ
C
(7)
\sum_{i=1}^{n} m_{i} \boldsymbol{\rho}_{i}=m \boldsymbol{\rho}_{C} {\tag7}
i=1∑nmiρi=mρC(7)
其中 m m m为质点系的总质量, ρ C \boldsymbol{\rho}_{C} ρC为质心 C C C在质心平动参考系 C x ′ y ′ z ′ C x^{\prime} y^{\prime} z^{\prime} Cx′y′z′中的矢径,显然 ρ C = 0 \boldsymbol{\rho}_{C}=0 ρC=0。故有 L C = L C r = ∑ i = 1 n ρ i × m i v i r (8) \boldsymbol{L}_{C}=\boldsymbol{L}_{C_{\mathrm{r}}}=\sum_{i=1}^{n} \boldsymbol{\rho}_{i} \times m_{i} \boldsymbol{v}_{i \mathbf{r}}{\tag8} LC=LCr=i=1∑nρi×mivir(8)
质点系的动量矩定理
令
O
O
O为固定点,
O
x
y
z
Oxyz
Oxyz为惯性系,
A
A
A为惯性系中的任意点,其绝对速度为
v
A
\boldsymbol{v}_A
vA。将质点系对
A
A
A的动量矩
L
A
=
∑
i
=
1
n
ρ
i
×
m
i
v
i
\boldsymbol{L}_{\boldsymbol{A}}=\sum_{i=1}^{n} \boldsymbol{\rho}_{\boldsymbol{i}} \times \boldsymbol{m}_{\boldsymbol{i}} \boldsymbol{v}_{\boldsymbol{i}}
LA=∑i=1nρi×mivi对时间求一阶导数,得
d
L
A
d
t
=
∑
i
=
1
n
d
ρ
i
d
t
×
m
i
v
i
+
∑
i
=
1
n
ρ
i
×
m
i
a
i
(9)
\frac{\mathrm{d} \boldsymbol{L}_{\boldsymbol{A}}}{\mathrm{d} t}=\sum_{i=1}^{n} \frac{\mathrm{d} \boldsymbol{\rho}_{\boldsymbol{i}}}{\mathrm{d} t} \times m_{i} \boldsymbol{v}_{i}+\sum_{i=1}^{n} \boldsymbol{\rho}_{i} \times m_{i} \boldsymbol{a}_{i}{\tag9}
dtdLA=i=1∑ndtdρi×mivi+i=1∑nρi×miai(9)
由牛顿第二定理得
m
i
a
i
=
F
i
(
i
)
+
F
i
(
e
)
(10)
m_{i} \boldsymbol{a}_{i}=\boldsymbol{F}_{i}^{(\mathrm{i})}+\boldsymbol{F}_{i}^{(\mathrm{e})}{\tag{10}}
miai=Fi(i)+Fi(e)(10)
质点系中内力总是成对出现的。且大小相等,方向相反,因此内力系对任意点的主矩为零,即
M
A
(
i
)
=
∑
i
=
1
n
ρ
i
×
F
i
(
i
)
=
0
\boldsymbol{M}_{A}^{(\mathrm{i})}=\sum_{i=1}^{n} \boldsymbol{\rho}_{i} \times \boldsymbol{F}_{i}^{(\mathrm{i})}=0
MA(i)=∑i=1nρi×Fi(i)=0。于是式(9)右端的第二项正是作用在质点系上外力对
A
A
A点的主炬
M
A
(
e
)
=
∑
i
=
1
n
ρ
i
×
F
i
(
e
)
(11)
\boldsymbol{M}_{A}^{(\mathrm{e})}=\sum_{i=1}^{n} \boldsymbol{\rho}_{i} \times \boldsymbol{F}_{i}^{(\mathrm{e})}{\tag{11}}
MA(e)=i=1∑nρi×Fi(e)(11)
将式(11)两边对时间求一阶导数得 d ρ i d t = v i − v A (12) \frac{\mathrm{d} \rho_{i}}{\mathrm{d} t}=\boldsymbol{v}_{i}-\boldsymbol{v}_{\boldsymbol{A}}{\tag{12}} dtdρi=vi−vA(12)
带入式,考虑到 v i × v i = 0 \boldsymbol{v}_{\boldsymbol{i}} \times \boldsymbol{v}_{\boldsymbol{i}}=0 vi×vi=0,可得 d L A d t = M A ( e ) + m v C × v A (13) \frac{\mathrm{d} \boldsymbol{L}_{A}}{\mathrm{d} t}=\boldsymbol{M}_{A}^{(\mathrm{e})}+m \boldsymbol{v}_{C} \times \boldsymbol{v}_{A}{\tag{13}} dtdLA=MA(e)+mvC×vA(13)
可见,质点系动量矩的变化仅取决于外力的主矩(这个仅字针对内力而言)。根据公式,变化还取决于表征质点系运动的交叉项。
下面介绍两种特殊情况:
- 如果点
A
A
A为固定点,即
v
A
=
0
\boldsymbol{v}_{A}=\mathbf{0}
vA=0,则由式(13)得:
d L A d t = M A ( e ) (14) \frac{\mathrm{d} \boldsymbol{L}_{A}}{\mathrm{d} t}=\boldsymbol{M}_{\boldsymbol{A}}^{(\mathrm{e})} {\tag{14}} dtdLA=MA(e)(14)
这就是质点系对固定点的动量矩定理。以A为原点建立直角坐标系
A
x
y
z
Axyz
Axyz,则有
d
L
x
d
t
=
M
x
(
e
)
d
L
y
d
t
=
M
y
(
e
)
d
L
z
d
t
=
M
z
(
e
)
(15)
\begin{aligned} &\frac{\mathrm{d} L_{x}}{\mathrm{d} t}=M_{x}^{(\mathrm{e})}\\ &\frac{\mathrm{d} L_{y}}{\mathrm{d} t}=M_{y}^{(\mathrm{e})}\\ &\frac{\mathrm{d} L_{z}}{\mathrm{d} t}=M_{z}^{(\mathrm{e})} \end{aligned}{\tag{15}}
dtdLx=Mx(e)dtdLy=My(e)dtdLz=Mz(e)(15)
其中
M
x
(
e
)
M_{x}^{(\mathrm{e})}
Mx(e),
M
y
(
e
)
M_{y}^{(\mathrm{e})}
My(e),
M
z
(
e
)
M_{z}^{(\mathrm{e})}
Mz(e)分别为外力对
x
x
x轴,
y
y
y轴,
z
z
z轴之矩。
L
x
L_{x}
Lx,
L
y
L_{y}
Ly,
L
z
L_{z}
Lz 分别为质点系对
x
x
x轴、
y
y
y轴和
z
z
z轴的动量矩。
如果外力对A点的主矩为零,则由式(14) 可知,质点系动矩守恒。如果作用于质点系上的外力对某定轴的矩为零,则质点系对该轴的动量矩守恒。
- 如果点A为质点系的质心C,则由式(13) 可得
d L C d t = M C ( o ) (16) \frac{\mathrm{d} \boldsymbol{L}_{C}}{\mathrm{d} t}=\boldsymbol{M}_{C}^{(\mathrm{o})}{\tag{16}} dtdLC=MC(o)(16)
将式(8)带入上式,可得
d
L
C
r
d
t
=
M
C
(
e
)
(17)
\frac{\mathrm{d} \boldsymbol{L}_{C \mathrm{r}}}{\mathrm{d} t}=\boldsymbol{M}_{C}^{(\mathrm{e})}{\tag{17}}
dtdLCr=MC(e)(17)
这两个式子是质点系对质心的动量矩定理。可以看出,它们与质点系对固定点的动量矩定理形式完全一致。当外力对质心的主矩为零时,质点系对质心的动量矩守恒。
注释:
- 本文动量矩的定义是绝对线动量对于矩心的矩之和,即定义式中叉乘的是质量微元的绝对速度,参考文献[1],[3]都采用这种定义方法。参考文献[2]采用相对动量矩的定义方法,即叉乘的是相对于矩心的速度。[3]对于绝对和相对角动量有清晰的描述。当然,当矩心为质心时,二者相等,且满足欧拉公式。
- 动量矩定理的公式(13)是一般情况,对参考点无任何限制,等式右边有质心和矩心速度叉乘这一项目。公式(14)和(16)被称为欧拉公式,分别对应着矩心为固定点以及为矩心为质心两种特殊情况。只有这两种情况下,才没有叉乘项。只有在上述两种情况下,合外力对质心主矩为零时,角动量才守恒。(否则根据公式(13),由于等式右端还有叉乘项,角速度的导数不为零)
参考文献:
- Orbital mechanics for engineering students
- Analytical mechanics of space system
- 理论力学 李俊峰 张雄