摄动理论

本文探讨了天体摄动理论及其在流体力学中的应用,包括Berman问题中平板间流体流动的建模,以及润滑理论中雷诺方程的处理。通过Boussinesq范式方程,分析了浅水海岸水波运动的近似解法。文章还提到了奇异摄动和非线性方程的奇异解,以及在解决这类问题时采用的渐进解方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摄动:天体受到另一个及以上的天体的引力而产生的复杂运动

摄动理论

微分方程的精确解为x_0,近似解\overline{x }= \epsilon^0 x_0 + \epsilon^1 x_1 + \epsilon^2 x_2 + ...
以微扰\epsilon的简并度来分辨:无简并或有简并。有简并的摄动,又称为奇异摄动(singular perturbation),比较难解,必须用到更进阶的理论。

补充1

Berman问题:长宽远大于平板间距的两个平板,两个平板有孔通入流体

该问题对应的方程为二维的连续性方程与动量方程,重点在边界条件
y=0,v=0,u_y=0 两板中间,法向速度为0,水平速度达到最大值
y=a,u=0,v=v_w上板处,水平速度为0,法向速度为流体入口速度

补充2

一些问题的数学建模为带小参数的PDE,如润滑理论的雷诺方程。

Boussinesq范式方程,用来模拟浅水海岸的水波运动(NS方程求解困难)
u_{tt} - u_{xx} = \epsilon (u_{xx} - 3u^2)_{xx}
初始条件u(x,0) = f(x), u_t(x,0) = -f'(x)

该方程带有小参数\epsilon,可以设近似解\overline{u} = \sum \epsilon ^ i u_i

带入近似解方程转化为两个方程。第一个为齐次波动方程,求解出u_0,将u_0带入第二个方程,则第二个方程为非齐次波动方程,求解u_1。齐次与非齐次波动方程都有再将边界条件带入,得到最终近似解\overline{u} = u_0 + \epsilon u_1

齐次波动方程的行波解:自变量的线性组合做变量代换来进行求解,u的自变量为x与t,线性组合为x+λt,解为u_0 = F(x+\lambda t)

补充3

问题的边界条件x(0) = a , x'(0) = b
近似解\overline{x} = x_0 + \epsilon x_1 + o(\epsilon^2 )
那么x_0 (0) = a , x'_0 (0) = bx_1 (0) = 0 , x'_1 (0) = 0
 

后续了解:

通解、特解
完备解
奇异解:指无法由通解中求出但仍能符合微分方程式的解,奇异解只会在非线性方程式中才会出现
渐进解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值