卡尔曼滤波(Kalman Filter)

本文介绍了卡尔曼滤波的基本概念和方程推导,通过一个简单的实例展示了其在滤除噪声、估计物体状态方面的效果。卡尔曼滤波是一种线性最优滤波器,适用于根据带噪声的观测数据来估计物理系统的状态。文中通过小车运动的例子,解释了状态预测、观测模型和滤波增益阵的概念,并提供了MATLAB实现的代码示例。
摘要由CSDN通过智能技术生成

一、引言


下面我们引用文献【1】中的一段话作为本文的开始:


想象你在黄昏时分看着一只小鸟飞行穿过浓密的丛林,你只能隐隐约约、断断续续地瞥见小鸟运动的闪现。你试图努力地猜测小鸟在哪里以及下一时刻它会出现在哪里,才不至于失去它的行踪。或者再想象你是二战中的一名雷达操作员,正在跟踪一个微弱的游移目标,这个目标每隔10秒钟在屏幕上闪烁一次。或者回到更远的从前,想象你是开普勒,正试图根据一组通过不规则和不准确的测量间隔得到的非常不精确的角度观测值来重新构造行星的运动轨迹。在所有这些情况下,你都试图根据随对问变化并且带有噪声的观察数据去估计物理系统的状态(例如位置、速度等等)。这个问题可以被形式化表示为时序概率模型上的推理,模型中的转移模型描述了运动的物理本质,而传感器模型则描述了测量过程。为解决这类问题,人们发展出来了一种特殊的表示方法和推理算法——卡尔曼滤波。


二、基本概念


回想一下HMM的基本模型(如下图所示),其中涂有阴影的圆圈yt-2yt-1yt)相当于是观测变量,空白圆圈xt-2xt-1xt)相当于是隐变量。这其实揭示了卡尔曼滤波与HMM之间拥有很深的渊源。回到刚刚提及的那几个例子,你所观测到的物体状态(例如雷达中目标的位置或者速度)相当于是对其真实状态的一种估计(因为观测的过程中必然存在噪声),用数学语言来表述就是P(yt | xt),这就是模型中的测量模型或测量概率(Measurement Probability)。另外一方面,物体当前的(真实)状态应该与其上一个观测状态相关,即存在这样的一个分布P(xt | xt-1),这就是模型中的转移模型或转移概率(Transition Probability)。当然,HMM中隐变量必须都是离散的,观测变量并无特殊要求。


从信号处理的角度来讲,滤波是从混合在一起的诸多信号中提取出所需信号的过程[2]。例如,我们有一组含有噪声的行星运行轨迹,我们希望滤除其中的噪声,估计行星的真实运动轨迹,这一过程就是滤波。如果从机器学习和数据挖掘的角度来说,滤波是一个理性智能体为了把握当前状态以便进行理性决策所采取的行动[1]。比如,前两天我们没出门,但是我们可以从房间里观察路上的行人有没有打伞(观测状态)来估计前两天有没有下雨(真实状态)。基于这些情况,现在我们要来决策今天(是否会有雨以及)外出是否需要打伞,这个过程就是滤波。读者应该注意把握上面两个定义的统一性。


所谓估计就是根据测量得出的与状态X(t) 有关的数据Y(t) = h[X(t)] + V(t) 解算出X(t)的计算值,其中随机向量V(t) 为测误差,称为X的估计,Y 称为 X 的测。因为是根据Y(t) 确定的.所以 是Y(t) 的函数。若 是Y 的线性函数,则  称作 X 的线性估计。设在 [t0t1] 时间段内的测为Y,相应的估计为,则

  • t = t1 时,  称为X(t)的估计;
  • t > t1 肘,称为X(t)的预测;
  • t < t1 时, 称为X(t)的平滑。

最优估计是指某一指标函数达到最值时的估计。卡尔曼滤波就是一种线性最优滤波器。


因为后面会用到,这里我们补充一下关于协方差矩阵的概念。

设 n 维随机变量(X1X2, …,Xn)的2阶混合中心距

σij = cov(XiXj) = E[(Xi-E(Xi))(Xj-E(Xj))],  (i,j = 1, 2, …, n)

都存在,则称矩阵

卡尔曼滤波是一种用来估计系统状态的递归滤波算法,适用于线性系统且满足高斯分布的噪声。该滤波器是由R. E. Kalman提出的。 卡尔曼滤波原理是基于两个假设:系统动态方程能由线性方程描述,测量方程能由线性方程描述。在每个时间步,卡尔曼滤波器通过两个步骤进行估计和更新:预测步骤和校正步骤。预测步骤是根据系统动态方程和上一个时间步的估计状态预测当前状态的均值和方差。校正步骤是根据测量方程和当前观测得到的测量值以及预测的状态,利用贝叶斯定理更新状态的均值和方差,得到最终的估计值。 推导卡尔曼滤波算法的公式如下: 预测步骤: 预测状态: $ x^- = A \cdot x + B \cdot u $ 预测状态协方差矩阵: $ P^- = A \cdot P \cdot A^T + Q $ 校正步骤: 卡尔曼增益: $ K = P^- \cdot H^T \cdot (H \cdot P^- \cdot H^T + R)^{-1} $ 修正后的状态: $ x = x^- + K \cdot (z - H \cdot x^-) $ 修正后的状态协方差矩阵: $ P = (I - K \cdot H) \cdot P^- $ 其中,x是系统状态向量,A是状态转移矩阵,B是输入矩阵,u是输入向量,P是后验状态的误差协方差矩阵,Q是预测误差协方差矩阵,H是测量矩阵,R是测量误差的协方差矩阵,z是观测向量。 通过上述公式的迭代,卡尔曼滤波器可以递归地估计系统的状态,并通过校正步骤利用最新的观测值来更新估计值。这种算法在估计方差较大的实时系统中具有优势,可以去除噪声和不确定性,提高系统的估计精度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值