【通俗理解】神经网络复杂性涌现——从简单规则到复杂行为的奇妙之旅

【通俗理解】神经网络复杂性涌现——从简单规则到复杂行为的奇妙之旅

关键词提炼

#神经网络 #复杂性涌现 #康威生命游戏 #沃夫勒姆110号规则 #联结主义 #单层神经网络 #神经网络寒冬

第一节:神经网络复杂性的类比与核心概念

1.1 神经网络复杂性的类比

神经网络的复杂性涌现可以比作一个“魔术师的盒子”,里面装满了简单的规则和初始条件。当你摇动这个盒子时,简单的规则相互作用,最终魔术般地呈现出复杂多变的行为。就像魔术师的盒子一样,神经网络也是从一个简单的起点出发,通过一系列的计算和迭代,最终展现出令人惊叹的复杂性。

1.2 相似公式比对

  • 简单算术运算 a + b a + b a+b,描述了基本的加法运算,简单且直接。
  • 神经网络复杂性涌现:通过简单的神经元连接和权重更新规则,如 y = σ ( ∑ i w i x i + b ) y = \sigma(\sum_{i} w_i x_i + b) y=σ(iwixi+b)(其中 σ \sigma σ是激活函数, w i w_i wi是权重, x i x_i xi是输入, b b b是偏置),在大量神经元和层次的作用下,涌现出复杂的模式和行为。

在这里插入图片描述

第二节:神经网络复杂性的核心概念与应用

2.1 核心概念

  • 简单规则:神经网络中的每个神经元都遵循简单的计算规则,如加权求和和激活函数。
  • 初始条件:神经网络的初始权重和偏置,它们像“种子”一样,决定了网络后续发展的可能性。
  • 迭代与计算:通过多次的迭代计算,简单的规则在神经网络中相互作用,逐渐产生复杂的行为和模式。

2.2 应用

  • 模式识别:神经网络能够识别复杂的图像、声音和文本模式,这得益于其从简单规则中涌现的复杂性
  • 预测与决策:在复杂的决策问题中,神经网络能够通过学习数据中的模式来做出准确的预测和决策。

2.3 优势

  • 自适应能力:神经网络能够从数据中自动学习并提取特征,无需人工指定规则。
  • 泛化能力:训练好的神经网络能够处理未见过的数据,展现出强大的泛化能力。

2.4 与复杂性科学的类比

神经网络复杂性的涌现与复杂性科学中的“自组织临界性”概念相似。自组织临界性描述了系统如何在没有外部控制的情况下,自发地组织成一种临界状态,这种状态既稳定又充满变化。神经网络也是通过简单的规则和初始条件,自发地组织成一种能够处理复杂信息的状态。

在这里插入图片描述

第三节:公式探索与推演运算

3.1 神经网络的基本形式

神经网络的基本形式可以表示为:

y = σ ( ∑ i w i x i + b ) y = \sigma(\sum_{i} w_i x_i + b) y=σ(iwixi+b)

其中, σ \sigma σ是激活函数,它引入了非线性,使得神经网络能够学习复杂的模式; w i w_i wi是权重,它们决定了输入的相对重要性; x i x_i xi是输入数据; b b b是偏置,它允许激活函数在没有输入的情况下也能被激活。

3.2 具体实例与推演

考虑一个简单的神经网络,它有一个输入层、一个隐藏层和一个输出层。输入层有两个神经元,隐藏层有三个神经元,输出层有一个神经元。每个神经元都使用ReLU激活函数。那么,这个神经网络的计算过程可以表示为:

h 1 = ReLU ( w 11 x 1 + w 12 x 2 + b 1 ) h_1 = \text{ReLU}(w_{11}x_1 + w_{12}x_2 + b_1) h1=ReLU(w11x1+w12x2+b1)
h 2 = ReLU ( w 21 x 1 + w 22 x 2 + b 2 ) h_2 = \text{ReLU}(w_{21}x_1 + w_{22}x_2 + b_2) h2=ReLU(w21x1+w22x2+b2)
h 3 = ReLU ( w 31 x 1 + w 32 x 2 + b 3 ) h_3 = \text{ReLU}(w_{31}x_1 + w_{32}x_2 + b_3) h3=ReLU(w31x1+w32x2+b3)
y = ReLU ( w o 1 h 1 + w o 2 h 2 + w o 3 h 3 + b o ) y = \text{ReLU}(w_{o1}h_1 + w_{o2}h_2 + w_{o3}h_3 + b_o) y=ReLU(wo1h1+wo2h2+wo3h3+bo)

通过多次的迭代和训练,这个简单的神经网络能够学会识别复杂的模式,如图像中的物体或文本中的情感。

3.3 与其他复杂性模型的对比

  • 康威生命游戏:它使用简单的规则(如细胞的生死取决于其周围活细胞的数量)来模拟生命的演化。与神经网络类似,它也展现了从简单规则到复杂行为的涌现。

  • 沃夫勒姆110号规则:这是一个一元细胞自动机,它使用简单的规则(如细胞的下一个状态取决于其当前状态和相邻细胞的状态)来生成复杂的模式。与神经网络相比,它也展示了简单规则如何导致复杂性的涌现。

第四节:公式推导与相似公式比对(扩展)

  • 感知机模型神经网络

    • 共同点:都使用加权求和和激活函数来处理输入并产生输出。
    • 不同点:感知机模型是一个更简单的线性模型,而神经网络则包含多个层次和非线性激活函数,能够学习更复杂的模式。
  • 逻辑回归神经网络中的单个神经元

    • 相似点:逻辑回归使用一个加权求和和一个sigmoid激活函数来产生输出,这与神经网络中的单个神经元非常相似。
    • 差异:逻辑回归通常用于二分类问题,而神经网络则包含多个神经元和层次,能够处理更复杂的任务。

第五节:核心代码与可视化

import numpy as np
import matplotlib.pyplot as plt

# Define the sigmoid activation function
def sigmoid(x):
    return 1 / (1 + np.exp(-x))

# Define the forward pass of a simple neural network
def forward_pass(X, W1, b1, W2, b2):
    Z1 = np.dot(X, W1) + b1
    A1 = sigmoid(Z1)
    Z2 = np.dot(A1, W2) + b2
    A2 = sigmoid(Z2)
    return A2

# Initialize weights and biases
np.random.seed(42)
W1 = np.random.randn(2, 3)
b1 = np.random.randn(3)
W2 = np.random.randn(3, 1)
b2 = np.random.randn(1)

# Generate some random input data
X = np.random.randn(100, 2)

# Perform the forward pass
output = forward_pass(X, W1, b1, W2, b2)

# Visualize the output
plt.scatter(X[:, 0], X[:, 1], c=output, cmap='coolwarm', label='Neural Network Output')
plt.xlabel('Input Feature 1')
plt.ylabel('Input Feature 2')
plt.title('Neural Network Complexity Emergence')
plt.colorbar()
plt.legend()
plt.show()

这段代码定义了一个简单的神经网络,并通过前向传播生成了输出。然后,它使用matplotlib库将输出可视化,展示了神经网络如何处理输入数据并产生复杂的输出模式。通过可视化,我们可以直观地看到神经网络如何从简单的规则和初始条件中涌现出复杂的行为。

可执行代码链接:

https://colab.research.google.com/drive/1LD9vkpUnX9syqfpQoOhUuWGMrI2r5s46?usp=sharing

运行结果:
在这里插入图片描述

  • 4
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

神经美学_茂森

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值