风控系统敏感词校验架构设计

1、写作背景

最近遇到一个需求是支持识别直播集合落地页用于广告投放,其实就是加一个规则配置。这里想到了自己经常联调的风控同学违禁词识别场景。和某明星塌房需要拦截关键词一毛一样。在联调之余有幸请教了风控的几位同学,再此学习了一下风控系统中敏感词校验的设计方案。

本文只讨论方案,不讨论技术细节。
本文只讨论方案,不讨论技术细节。
本文只讨论方案,不讨论技术细节。

方案要解决的关键点是

  • 实时生效。场景:张三塌房,需要对增量的文案流量过滤张三关键词。
  • 大量的关键词内存存储方案。场景:业务需求增多,关键词自然增多,很常见。
  • 快速匹配违禁词。场景:用户多,词多,自然需求

2、实现思路

2.1 HelloWord级别的敏感词校验

我们以下面的DEMO为例,从0开始**,一步一步的质疑这个方案,从而实现局部最优**。

DEMO逻辑为读取数据库全量违禁词存储到内存中,流量来了以后for循环处理,校验是否命中违禁词。

package cbeann;
public class App {
   
  public static List<String> forbiddenWordCache = cacheInit(
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CBeann

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值