“常数变易法”有效的原理

传送门:https://blog.csdn.net/w573719227/article/details/83050039

 

“常数变易法”有效的原理

 

常数变易法

为什么写这篇文章

学过“常数变易法”的同学请直接点击“常数变易法的原理”
这里只讲述常数变易法的原理,为什么要用常数变易法请参见参考资料《常数变易法的解释 》

在学习高数的过程中,关于为什么在解一阶线性微分方程的时候要使用常数变易法,为什么可以使用常数变易法,常数变易法为什么是有效并且正确的,老师都语焉不详,一笔带过,导致一直不能很好地理解其中的数学思想。自己也只能接受老师的解释,将这个方法强行合理化。

但是最近再次看到一阶线性微分方程的求解,看到直接给出来的求解公式一头雾水,再去翻书,始终还是感觉隔靴搔痒,雾里看花,始终不自在,所以上网搜索了一下,搜到了一篇相关文章(常数变易法的解释 ),终于明白了其中蕴含的深刻而巧妙的数学思想,喜不自禁。

所以在此记录下个人的理解,一则梳理自己的思路,二则可供感兴趣的同学参考,倘能有助于大家理解常数变易法的“自然”性,亦是幸甚。

什么是常数变易法?

有以下一阶线性微分方程:y′+P(x)y=Q(x)(1)(1)y′+P(x)y=Q(x) y' +P(x)y=Q(x) \tag1 y′+P(x)y=Q(x)(1)其中,P(x)̸≡0P(x)̸≡0 P(x)\not \equiv 0 P(x)̸​≡0 且 Q(x)̸≡0Q(x)̸≡0 Q(x)\not \equiv 0 Q(x)̸​≡0。

若解其对应的齐次方程:y′+P(x)y=0(2)(2)y′+P(x)y=0 y' +P(x)y=0\tag2 y′+P(x)y=0(2)则易有:y=Ce−∫P(x)dx(C≠0)y=Ce−∫P(x)dx(C≠0) y=Ce^{-\int P(x)dx}(C\neq 0) y=Ce−∫P(x)dx(C̸​=0)即为齐次方程的通解

这时,我们可以用常数变易法来求非齐次方程(1)(1) (1) (1)的通解,即将齐次方程(2)(2) (2) (2)的通解中的常数CC C C换成(变易为)一个关于xx x x的未知函数u(x)u(x) u(x) u(x),变易之后,非齐次方程通解表示如下:y=u(x)⋅e−∫P(x)dx(u(x)̸≡0)(3)(3)y=u(x)⋅e−∫P(x)dx(u(x)̸≡0) y=u(x)\cdot e^{-\int P(x)dx} \Big(u(x)\not\equiv 0\Big)\tag3 y=u(x)⋅e−∫P(x)dx(u(x)̸​≡0)(3)于是将该通解形式代入原方程(1)(1) (1) (1),可以解得:u(x)=∫Q(x)eP(x)dxdx+Cu(x)=∫Q(x)e∫P(x)dxdx+C u(x)=\int Q(x)e^{\int P(x)dx}dx+C u(x)=∫Q(x)e∫P(x)dxdx+C将上式代入(3)(3) (3) (3)式,即可解得:y=e−∫P(x)dx⋅(∫Q(x)eP(x)dxdx+C)y=e−∫P(x)dx⋅(∫Q(x)e∫P(x)dxdx+C) y=e^{-\int P(x)dx}\cdot (\int Q(x)e^{\int P(x)dx}dx+C) y=e−∫P(x)dx⋅(∫Q(x)e∫P(x)dxdx+C)这就是所谓常数变易法
可以看到,这里把常数 CC C C 直接代换为了函数u(x)u(x) u(x) u(x) ,显得十分生硬不自然,没有什么说服力。然而书上很少会对这个方法的由来作出介绍,所以想必会使很多人感到困惑。

错误的理解

对于常数变易法,我以前的理解是:
既然 y=Ce−∫P(x)dx(C≠0)y=Ce−∫P(x)dx(C≠0) y=Ce^{-\int P(x)dx}(C\neq 0) y=Ce−∫P(x)dx(C̸​=0) 可以使齐次方程 y′+P(x)y=0y′+P(x)y=0 y' +P(x)y=0 y′+P(x)y=0 成立,那么在其基础上增添一个函数,就应该使得该方程运算结果多出一个与自由项相关的余项Q(x)Q(x) Q(x) Q(x),所以可以使用常数变易法。
这样的理解是基于表面形式做出的一个解释,然而还是不能够明确地说明这个方法的正当性与正确性。
所以我们需要进一步探究其内在的原理。

常数变易法的原理

基本

容易理解,我们可以把任意函数表示成为两个函数之积,即 y(x)=u(x)⋅v(x)(4)(4)y(x)=u(x)⋅v(x) y(x)=u(x)\cdot v(x)\tag4 y(x)=u(x)⋅v(x)(4)对 y(x)y(x) y(x) y(x) 求导,得:y′(x)=u′(x)v(x)+u(x)v′(x)y′(x)=u′(x)v(x)+u(x)v′(x) y'(x)=u'(x)v(x)+u(x)v'(x) y′(x)=u′(x)v(x)+u(x)v′(x)

计算

y(x)=u(x)⋅v(x)y(x)=u(x)⋅v(x) y(x)=u(x)\cdot v(x) y(x)=u(x)⋅v(x),y′(x)=u′(x)v(x)+u(x)v′(x)y′(x)=u′(x)v(x)+u(x)v′(x) y'(x)=u'(x)v(x)+u(x)v'(x) y′(x)=u′(x)v(x)+u(x)v′(x) 代入非齐次方程(1)(1) (1) (1),整理得到:u′(x)v(x)+u(x)⋅[v′(x)+P(x)v(x)]=Q(x)(5)(5)u′(x)v(x)+u(x)⋅[v′(x)+P(x)v(x)]=Q(x) u'(x)v(x)+u(x)\cdot [v'(x)+P(x)v(x)]=Q(x)\tag5 u′(x)v(x)+u(x)⋅[v′(x)+P(x)v(x)]=Q(x)(5)由解一阶线性微分方程的常用方法分离变量法容易想到,如果没有 u(x)⋅[v′(x)+P(x)v(x)]u(x)⋅[v′(x)+P(x)v(x)] u(x)\cdot [v'(x)+P(x)v(x)] u(x)⋅[v′(x)+P(x)v(x)] 这一项,我们就可以简便地利用分离变量法进行计算。
现在单独考察 u(x)⋅[v′(x)+P(x)v(x)]u(x)⋅[v′(x)+P(x)v(x)] u(x)\cdot [v'(x)+P(x)v(x)] u(x)⋅[v′(x)+P(x)v(x)] 这一项。其中 u(x)u(x) u(x) u(x) 不确定,不能用来保持 u(x)⋅[v′(x)+P(x)v(x)]̸≡0u(x)⋅[v′(x)+P(x)v(x)]̸≡0 u(x)\cdot [v'(x)+P(x)v(x)]\not\equiv0 u(x)⋅[v′(x)+P(x)v(x)]̸​≡0 ,所以考虑另一个因式 v′(x)+P(x)v(x)v′(x)+P(x)v(x) v'(x)+P(x)v(x) v′(x)+P(x)v(x) 。显然 v(x)v(x) v(x) v(x) 是不确定的,在 u(x)u(x) u(x) u(x) 不确定的情况下,可以任意取值。则假设 v(x)v(x) v(x) v(x) 满足 v′(x)+P(x)v(x)≡0(6)(6)v′(x)+P(x)v(x)≡0 v'(x)+P(x)v(x)\equiv0\tag6 v′(x)+P(x)v(x)≡0(6) 观察式 (6)(6) (6) (6) ,可以看到其形式与式 (2)(2) (2) (2) 基本一致。
求解式 (6)(6) (6) (6),可以得其通解形式:v(x)=C1⋅e−∫P(x)dx(7)(7)v(x)=C1⋅e−∫P(x)dx v(x)=C_1\cdot e^{-\int P(x)dx}\tag7 v(x)=C1​⋅e−∫P(x)dx(7)将所得通解代入 (4)(4) (4) (4),则y(x)=u(x)⋅C1⋅e−∫P(x)dx(8)(8)y(x)=u(x)⋅C1⋅e−∫P(x)dx y(x)=u(x)\cdot C_1\cdot e^{-\int P(x)dx}\tag8 y(x)=u(x)⋅C1​⋅e−∫P(x)dx(8)将 (8)(8) (8) (8) 式代入 (5)(5) (5) (5) 式,得到:u′(x)⋅C1⋅e−∫P(x)dx=Q(x)u′(x)⋅C1⋅e−∫P(x)dx=Q(x) u'(x)\cdot C_1\cdot e^{-\int P(x)dx}=Q(x) u′(x)⋅C1​⋅e−∫P(x)dx=Q(x)使用分离变量法,容易解得:u(x)=1C1∫Q(x)⋅eP(x)dxdx+C2(9)(9)u(x)=1C1∫Q(x)⋅e∫P(x)dxdx+C2 u(x)=\frac1{C_1}\int Q(x)\cdot e^{\int P(x)dx}dx+C_2\tag9 u(x)=C1​1​∫Q(x)⋅e∫P(x)dxdx+C2​(9)将 (7)(7) (7) (7) (9)(9) (9) (9) 同时代入式 (4)(4) (4) (4) ,则y(x)=e−∫P(x)dx(∫Q(x)eP(x)dxdx+C1C2)y(x)=e−∫P(x)dx(∫Q(x)e∫P(x)dxdx+C1C2) y(x)=e^{-\int P(x)dx}(\int Q(x)e^{\int P(x)dx}dx+C_1C_2) y(x)=e−∫P(x)dx(∫Q(x)e∫P(x)dxdx+C1​C2​)令C=C1C2C=C1C2 C=C_1C_2 C=C1​C2​,则得原一阶线性微分方程的通解为:y(x)=e−∫P(x)dx(∫Q(x)eP(x)dxdx+C)y(x)=e−∫P(x)dx(∫Q(x)e∫P(x)dxdx+C) y(x)=e^{-\int P(x)dx}(\int Q(x)e^{\int P(x)dx}dx+C) y(x)=e−∫P(x)dx(∫Q(x)e∫P(x)dxdx+C)

推广

这一部分是在知乎看到了关于“常数变易法”在高阶作用的问题之后增补的

问题链接:常数变易法思想的来源或本质是什么?
现在有一般nn n n阶线性微分方程Pn(x)y(n)+Pn−1(x)y(n−1)+Pn−2(x)y(n−2)...+P1(x)y′+P0(x)y=Q(x)(10)(10)Pn(x)y(n)+Pn−1(x)y(n−1)+Pn−2(x)y(n−2)...+P1(x)y′+P0(x)y=Q(x) P_{n}(x)y^{(n)}+P_{n-1}(x)y^{(n-1)}+P_{n-2}(x)y^{(n-2)}...+P_{1}(x)y'+P_{0}(x)y=Q(x)\tag{10} Pn​(x)y(n)+Pn−1​(x)y(n−1)+Pn−2​(x)y(n−2)...+P1​(x)y′+P0​(x)y=Q(x)(10)
由前述有,y(x)y(x) y(x) y(x)可以表示为y(x)=u(x)v(x)y(x)=u(x)v(x) y(x)=u(x)v(x) y(x)=u(x)v(x)。
现在我们考察两函数乘积的高阶微分形式。
比较二项式展开定理我们不难发现,对y=uvy=uv y=uv y=uv的高阶微分具有类似的形式。
比如:(uv)′=uv+uv′(uv)′=u′v+uv′ (uv)'=u'v+uv' (uv)′=u′v+uv′(uv)''=(uv+uv′)′=u''v+2uv′+uv''(uv)′′=(u′v+uv′)′=u′′v+2u′v′+uv′′ (uv)''=(u'v+uv')'=u''v+2u'v'+uv'' (uv)′′=(u′v+uv′)′=u′′v+2u′v′+uv′′...... ... ...
从原理上来看,展开多项式的每一项都应有nn n n阶微分,而这nn n n阶微分分别分配在uvu、v u、v u、v上;对于多项式的每一项,相当于任选kk k k个微分算子作用于uu u u,则另有(nk)(n−k) (n-k) (n−k)个微分算子作用于vv v v,与二项式展开定理本质相同,所以展开形式也应相同。
则有式(11)(11) (11) (11):(uv)(n)=C0nu(n)v+C1nu(n−1)v(1)+C2nu(n−2)v(2)+...+Cn−1nu(1)v(n−1)+Cnnuv(n)(11)(11)(uv)(n)=Cn0u(n)v+Cn1u(n−1)v(1)+Cn2u(n−2)v(2)+...+Cnn−1u(1)v(n−1)+Cnnuv(n) (uv)^{(n)}=C_n^0u^{(n)}v+C_n^1u^{(n-1)}v^{(1)}+C_n^2u^{(n-2)}v^{(2)}+...+C_n^{n-1}u^{(1)}v^{(n-1)}+C_n^nuv^{(n)}\tag{11} (uv)(n)=Cn0​u(n)v+Cn1​u(n−1)v(1)+Cn2​u(n−2)v(2)+...+Cnn−1​u(1)v(n−1)+Cnn​uv(n)(11)
将这个一般形式代回式(10)(10) (10) (10),假设将uu u u作为主要研究对象(以vv v v为主要研究对象亦可,二者地位相同),则按uu u u的导数降阶排列多项式:Mn−1(x)u(n)+Mn−2(x)u(n−1)+...+M0(x)u′+(Pn(x)v(n)+Pn−1(x)v(n−1)+...+P1(x)v′+P0(x)v)u=Q(x)(12)(12)Mn−1(x)u(n)+Mn−2(x)u(n−1)+...+M0(x)u′+(Pn(x)v(n)+Pn−1(x)v(n−1)+...+P1(x)v′+P0(x)v)u=Q(x) M_{n-1}(x)u^{(n)}+M_{n-2}(x)u^{(n-1)}+...+M_0(x)u'+\bigl(P_n(x)v^{(n)}+P_{n-1}(x)v^{(n-1)}+...+P_{1}(x)v'+P_0(x)v\bigr)u=Q(x)\tag{12} Mn−1​(x)u(n)+Mn−2​(x)u(n−1)+...+M0​(x)u′+(Pn​(x)v(n)+Pn−1​(x)v(n−1)+...+P1​(x)v′+P0​(x)v)u=Q(x)(12)
其中,Mi(x)Mi(x) M_i(x) Mi​(x)为关于xx x x的多项式。
按一阶情况下的原理,可以令多项式(Pn(x)v(n)+Pn−1(x)v(n−1)+...+P1(x)v′+P0(x)v)≡0(Pn(x)v(n)+Pn−1(x)v(n−1)+...+P1(x)v′+P0(x)v)≡0 \bigl(P_n(x)v^{(n)}+P_{n-1}(x)v^{(n-1)}+...+P_{1}(x)v'+P_0(x)v\bigr)\equiv0 (Pn​(x)v(n)+Pn−1​(x)v(n−1)+...+P1​(x)v′+P0​(x)v)≡0消去uu u u项。解vv v v即为解式1010 10 10对应的齐次线性微分方程。
则剩下的式子为Mn−1(x)u(n)+Mn−2(x)u(n−1)+...+M0(x)u′=Q(x)Mn−1(x)u(n)+Mn−2(x)u(n−1)+...+M0(x)u′=Q(x) M_{n-1}(x)u^{(n)}+M_{n-2}(x)u^{(n-1)}+...+M_0(x)u'=Q(x) Mn−1​(x)u(n)+Mn−2​(x)u(n−1)+...+M0​(x)u′=Q(x)
α(x)=u′(x)α(x)=u′(x) \alpha(x)=u'(x) α(x)=u′(x),则上式化为Mn−1(x)α(n−1)+Mn−2(x)α(n−2)+...+M0(x)α=Q(x)(13)(13)Mn−1(x)α(n−1)+Mn−2(x)α(n−2)+...+M0(x)α=Q(x) M_{n-1}(x)\alpha^{(n-1)}+M_{n-2}(x)\alpha^{(n-2)}+...+M_0(x)\alpha=Q(x)\tag{13} Mn−1​(x)α(n−1)+Mn−2​(x)α(n−2)+...+M0​(x)α=Q(x)(13)
比较式(12)、(13)(12)、(13) (12)、(13) (12)、(13),可以看到:通过常数变易法,成功地把求解一个nn n n阶线性微分非齐次方程的问题,为了求解一个对应的nn n n阶线性微分齐次方程和一个(n−1)(n−1) (n-1) (n−1)阶线性微分非齐次方程的问题。

总结

很显然我们可以看到,常数变易法是蕴含了很深刻的数学思想、具有很强健的数学基础的解题方法,并非无根之萍,更不是突发奇想或是强行合理。
但是从其原理上来讲,将其称呼为“常数变易法”是不太妥当的,本质上它并非是单纯地使用一个函数来替代了齐次方程通解的常数。
常数变易法的称呼应该说为了便于日常应用和直观记忆,这里可以不必纠结。

参考资料

[1] lookof,常数变易法的解释
[2] 崔士襄,邯郸农业高等专科学校,“常数变易法”来历的探讨

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值