清华NLP机器翻译论文精华汇总

本文全面回顾了机器翻译领域的最新进展,从统计机器翻译到神经机器翻译,详细介绍了各种模型架构、注意力机制、开放词汇及字符级翻译、训练目标与框架、解码策略等关键技术。此外,还探讨了低资源语言翻译、文档级翻译、多模态翻译等前沿话题,为研究者和从业者提供了宝贵的参考资料。

传送门:https://github.com/THUNLP-MT/MT-Reading-List

 

Machine Translation Reading List

This is a machine translation reading list maintained by the Tsinghua Natural Language Processing Group.

The past three decades have witnessed the rapid development of machine translation, especially for data-driven approaches such as statistical machine translation (SMT) and neural machine translation (NMT). Due to the dominance of NMT at the present time, priority is given to collecting important, up-to-date NMT papers. The list is still incomplete and the categorization might be inappropriate. We will keep adding papers and improving the list. Any suggestions are welcome!

10 Must Reads

Statistical Machine Translation

Tutorials

Word-based Models

Phrase-based Models

Syntax-based Models

Discriminative Training

System Combination

Evaluation

Neural Machine Translation

Tutorials

Model Architecture

Attention Mechanism

Open Vocabulary and Character-based NMT

Training Objectives and Frameworks

Decoding

Low-resource Language Translation

Semi-supervised Methods

Unsupervised Methods

Pivot-based Methods

Data Augmentation Methods

Data Selection Methods

Transfer Learning & Multi-Task Learning Methods

Meta Learning Methods

Multilingual Language Translation

Prior Knowledge Integration

Word/Phrase Constraints

Syntactic/Semantic Constraints

Coverage Constraints

Document-level Translation

Robustness

Visualization and Interpretability

Linguistic Interpretation

Fairness and Diversity

Efficiency

Pre-Training

Speech Translation and Simultaneous Translation

Multi-modality

Domain Adaptation

Quality Estimation

Automatic Post-Editing

Word Translation and Bilingual Lexicon Induction

Poetry Translation

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值