1、矩阵数据的输入
矩阵的直接输入:同一行元素使用空格或者逗号隔开
不同行元素使用分号或回车隔开
零矩阵:zeros(行,列)
幺矩阵:ones()
行向量的建立:e1:e2:e3
或者 linspace(e1,e2,e3)
sub2ind() ind2sub() 下标与索引相互转换
reshape()矩阵的重排
矩阵的选中: A(1,:)第一行
A(:,1)第一列
矩阵的扩展:repmat()复制矩阵
压缩矩阵:unique() 删除相同元素
eye()单位矩阵
rand()随机矩阵
mean()均方差
magic()魔方矩阵
hilb()希尔伯特矩阵
toeplitz()Toeplitz矩阵
det()求行列式
inv()求逆
conj()共轭
sum()求和 行列总和都可
2、符号运算
符号常量与符号变量
sym(‘a’) 建立符号变量
sym(‘3’)建立符号常量
simplify()简化
factor()因式分解
eval()符号与数值的转换
expand()展开为级数
collect()合并同类项
subs(函数,自变量)求因变量
limit()求极限
diff()符号微分
int()符号积分
symsum()符号级数求和 symsun(通项,参数,始变量,终变量)
taylor()泰勒级数 taylor(通项f , x,展开前n项,在哪展开)
代数方程
syms x
solve(x +xexp(x)-10)
eval(solve(x +xexp(x)-10))
方程组[X,Y]=solve(‘x+y=98’,x^3 +y^3=2,‘x,y’)
符号常微分方程
dsolve(‘Dy-(x^2 +y^2)/2’,‘x’)