题目:Partial Person Re-identification with Part-Part Correspondence Learning

文章提出了一种名为PPCL的网络,利用自监督学习解决部分行人识别中的问题。该网络通过GLRec模块估计仿射变换并校正残缺图片,CRLoc模块则在PP-Cycle和PP-Triplet约束下寻找对应区域。目标是改善输入图片不一致和噪声干扰下的相似性度量,并增强CNN对局部-全局关系的理解。实验表明,这种方法能有效提升局部行人重识别的性能。
摘要由CSDN通过智能技术生成

题目:Partial Person Re-identification with Part-Part Correspondence Learning

作者:Tianyu He

参考:自监督、自监督

一、研究背景:

许多方法在使用时默认输入图片都是完全满足需求的,然而在实际应用时,输入图片往往没有那么完美。如果不对这些方法做出调整,残缺的输入图片会让实验效果大幅降低。因此,这篇文章致力于用自监督的PPCL网络学习局部与局部之间的关系,以更好地处理处理残缺图片。该网络不需要局部级的监督,只需要用PP-cycle和PP-triple约束。

二、研究目的:

1、通过同时解决

(1)输入图片大小不一致的问题

(2)度量相似性时不相关区域产生噪声的问题

2、弥补CNN网络不能很好地处理局部-全局关系的缺陷,实现仅用一系列局部图片来完成识别。

三、技术路线:

输入一张局部行人图片

用GLRec模块生成一系列仿射变换系数,以指导局部图片的转换

用CRLoc模块,在PP-Cycle和PP-Triplet损失约束下,定位相应区域;

1.Gated Layout Rectifier (R + G + T)

R:估计仿射变换系数、残缺图片置信分数

用自监督方式训练模块R:

G:门限

 T:残缺图片进行校正:

2.Feature Extraction (F)

3.Corresponding Region Locator (L)

在完整图片y中找到与残缺图片语义相同的部分

 

4.损失

(a)Part-Part Cycle Constraint(重建损失)

(b)Part-Part Triplet Constrain

 

(c)总损失

四、实验效果

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二苏旧局吖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值