一、研究背景
将Deepfake检测器用于不可见的伪造手段仍比较困难。
先有提升检测器泛化性能的思路有两种,但都有缺陷:
合成伪造数据:能合成的伪造类型比较有限。
提取共有特征:共有特征对预处理步骤敏感,在不同数据集中呈现较大差异。
二、研究动机
泛化性好的表征应该对多种类型的伪造都很敏感。
三、研究目标
通过合成对抗性数据来提升深度伪造检测器的泛化性能:
1.利用伪造配置池合成伪造数据来增加伪造的“多样性”。(配置:合成某种伪造数据的特定方法或控制特定合成过程的一组参数)
2.通过预测伪造配置增强模型对伪造的“敏感性”。
四、技术路线
为探索更大的伪造空间,使用对抗训练策略动态合成当前最具挑战性的伪造数据。
1.Selecting Space and Synthesizing Forgery
-
输入:
真实图像 I