重积分知识点整理

二重积分的概念与性质

二重积分的概念

定义:

  设 f ( x , y ) f(x,y) f(x,y)是有界闭区域 D D D上的有界函数。将 D D D任意分成 n n n个小闭区域 Δ σ 1 \Delta\sigma_1 Δσ1 Δ σ 2 \Delta\sigma_2 Δσ2,···, Δ σ n \Delta\sigma_n Δσn,仍用这些符号表示它们的面积。在 Δ σ i \Delta\sigma_i Δσi上任取一点 ( ξ i , η i ) (\xi_i,\eta_i) (ξi,ηi),作乘积 f ( ξ i , η i ) Δ σ i ( i = 1 , 2 , ⋅ ⋅ ⋅ , n ) f(\xi_i,\eta_i)\Delta\sigma_i(i=1,2,···,n) f(ξi,ηi)Δσi(i=1,2,,n),并作和 S n = ∑ i = 1 n f ( ξ i , η i ) Δ σ i S_n=\sum_{i=1}^n f(\xi_i,\eta_i)\Delta\sigma_i Sn=i=1nf(ξi,ηi)Δσi
λ = max ⁡ 1 ≤ i ≤ n { Δ σ i \lambda=\mathop{\max}\limits_{1\le i\le n}\{\Delta\sigma_i λ=1inmax{Δσi的直径 } \} }( Δ σ i \Delta\sigma_i Δσi的直径指的是其上最远两点间的距离),如果极限 lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i , η i ) Δ σ i {\lim_{\lambda\to0}\sum_{i=1}^n f(\xi_i,\eta_i)\Delta\sigma_i} λ0limi=1nf(ξi,ηi)Δσi的存在与 D D D的分法和 ( ξ i , η i ) (\xi_i,\eta_i) (ξi,ηi)的取法无关,则称函数 f ( x , y ) f(x,y) f(x,y)在闭区域 D D D可积,称此极限为 f ( x , y ) f(x,y) f(x,y)在闭区域 D D D上的二重积分,记为 ∬ D f ( x , y ) d σ \iint \limits_{D}f(x,y)d\sigma Df(x,y)dσ,即 ∬ D f ( x , y ) d σ = lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i , η i ) Δ σ i \iint \limits_{D}f(x,y)d\sigma={\lim_{\lambda\to0}\sum_{i=1}^n f(\xi_i,\eta_i)\Delta\sigma_i} Df(x,y)dσ=λ0limi=1nf(ξi,ηi)Δσi,称 f ( x , y ) f(x,y) f(x,y)被积函数 f ( x , y ) d σ f(x,y)d\sigma f(x,y)dσ被积表达式 d σ d\sigma dσ面积微元 x x x y y y积分变量 D D D积分区域 S n S_n Sn积分和
关于二重积分的存在性,我们不加证明的使用:若函数 f ( x , y ) f(x,y) f(x,y)在有界闭区域 D D D上连续,则 f ( x , y ) f(x,y) f(x,y) D D D上的二重积分存在。【注意 f f f的连续性是二重积分存在的一个充分条件而不是必要条件】

二重积分的性质

性质1(线性性质)

  1. f ( x , y ) f(x,y) f(x,y) g ( x , y ) g(x,y) g(x,y) D D D上可积,则 f ( x , y ) ± g ( x , y ) f(x,y)\pm g(x,y) f(x,y)±g(x,y) D D D上可积,且 ∬ D [ f ( x , y ) ± g ( x , y ) ] d σ = ∬ D f ( x , y ) d σ ± ∬ D g ( x , y ) d σ \iint \limits_{D}\left[f(x,y)\pm g(x,y)\right]d\sigma=\iint \limits_{D}f(x,y)d\sigma \pm\iint \limits_{D}g(x,y)d\sigma D[f(x,y)±g(x,y)]dσ=Df(x,y)dσ±Dg(x,y)dσ
  2. f ( x , y ) f(x,y) f(x,y) D D D上可积,则 k f ( x , y ) kf(x,y) kf(x,y) D D D上可积,且 ∬ D k f ( x , y ) d σ = k ∬ D f ( x , y ) d σ \iint \limits_{D}kf(x,y)d\sigma=k\iint \limits_{D}f(x,y)d\sigma Dkf(x,y)dσ=kDf(x,y)dσ

性质2(对积分区域的可加性)

f ( x , y ) f(x,y) f(x,y) D D D上可积。若将 D D D分为两个区域 D 1 D_1 D1 D 2 D_2 D2,则 ∬ D f ( x , y ) d σ = ∬ D 1 f ( x , y ) d σ + ∬ D 2 f ( x , y ) d σ \iint \limits_{D}f(x,y)d\sigma=\iint \limits_{D_1}f(x,y)d\sigma+\iint \limits_{D_2}f(x,y)d\sigma Df(x,y)dσ=D1f(x,y)dσ+D2f(x,y)dσ

性质3

设在有界闭区域 D D D上恒有 f ( x , y ) ≡ 1 f(x,y)\equiv1 f(x,y)1,则 ∬ D 1 d σ = ∬ D d σ = S D \iint \limits_{D}1d\sigma=\iint \limits_{D}d\sigma=S_D D1dσ=Ddσ=SD

性质4

f ( x , y ) f(x,y) f(x,y) D D D上可积,且 f ( x , y ) ≥ 0 f(x,y)\ge0 f(x,y)0,则 ∬ D f ( x , y ) d σ ≥ 0 \iint \limits_{D}f(x,y)d\sigma\ge0 Df(x,y)dσ0

推论(比较性质)

f ( x , y ) f(x,y) f(x,y) g ( x , y ) g(x,y) g(x,y) D D D上可积,且 f ( x , y ) ≤ g ( x , y ) f(x,y)\le g(x,y) f(x,y)g(x,y),则 ∬ D f ( x , y ) d σ ≤ ∬ D g ( x , y ) d σ \iint \limits_{D}f(x,y)d\sigma\le \iint \limits_{D}g(x,y)d\sigma Df(x,y)dσDg(x,y)dσ

性质 5

f ( x , y ) f(x,y) f(x,y) D D D上可积,则 ∣ f ( x , y ) ∣ |f(x,y)| f(x,y) D D D上可积,且有 ∣ ∬ D f ( x , y ) d σ ∣ ≤ ∬ D ∣ f ( x , y ) ∣ d σ \left|\iint \limits_{D}f(x,y)d\sigma\right|\le\iint \limits_{D}|f(x,y)|d\sigma Df(x,y)dσDf(x,y)dσ

性质 6(估值性质)

f ( x , y ) f(x,y) f(x,y) D D D上可积,且 M M M m m m分别为 f ( x , y ) f(x,y) f(x,y) D D D上的最大值和最小值,则 m S D ≤ ∬ D f ( x , y ) d σ ≤ M S D mS_D\le\iint \limits_{D}f(x,y)d\sigma\le MS_D mSDDf(x,y)dσMSD

性质 7(中值定理)

f ( x , y ) f(x,y) f(x,y)在闭区域 D D D上连续,则至少存在一点 ( ξ , η ) ∈ D (\xi,\eta)\in D (ξ,η)D,使得 ∬ D f ( x , y ) d σ = f ( ξ , η ) S D \iint \limits_{D}f(x,y)d\sigma=f(\xi,\eta)S_D Df(x,y)dσ=f(ξ,η)SD称为二重积分中值公式。将上式改写为 f ( ξ , η ) = 1 S D ∬ D f ( x , y ) d σ f(\xi,\eta)=\frac{1}{S_D}\iint \limits_{D}f(x,y)d\sigma f(ξ,η)=SD1Df(x,y)dσ称为 f ( x , y ) f(x,y) f(x,y) D D D上的平均值公式,称KaTeX parse error: Undefined control sequence: \si at position 3: f(\̲s̲i̲,\eta) f ( x , y ) f(x,y) f(x,y) D D D上的平均值

二重积分的对称性

设以下二重积分均存在

  1. 若积分区域 D D D关于 y y y轴对称, D 1 D_1 D1 D D D y y y轴以右的部分,则 ∬ D f ( x , y ) d σ = { 2 ∬ D 1 f ( x , y ) d σ 当 f ( − x , y ) = f ( x , y ) 0 当 f ( − x , y ) = − f ( x , y ) \iint \limits_{D}f(x,y)d\sigma=\left\{ \begin{array}{rcl} 2\iint \limits_{D_1}f(x,y)d\sigma & & {当f(-x,y) =f(x,y)}\\ 0 & & {当f(-x,y)=-f(x,y)}\\ \end{array} \right. Df(x,y)dσ={2D1f(x,y)dσ0f(x,y)=f(x,y)f(x,y)=f(x,y)
  2. 若积分区域 D D D关于 x x x轴对称, D 1 D_1 D1 D D D x x x轴以上的部分,则 ∬ D f ( x , y ) d σ = { 2 ∬ D 1 f ( x , y ) d σ 当 f ( x , − y ) = f ( x , y ) 0 当 f ( x , − y ) = − f ( x , y ) \iint \limits_{D}f(x,y)d\sigma=\left\{ \begin{array}{rcl} 2\iint \limits_{D_1}f(x,y)d\sigma & & {当f(x,-y) =f(x,y)}\\ 0 & & {当f(x,-y)=-f(x,y)}\\ \end{array} \right. Df(x,y)dσ={2D1f(x,y)dσ0f(x,y)=f(x,y)f(x,y)=f(x,y)
  3. 若积分区域 D D D具有轮换对称性,即 x x x y y y互换, D D D不变(即 D D D关于直线 y = x y=x y=x对称),则 ∬ D f ( x , y ) d σ = ∬ D f ( y , x ) d σ = 1 2 [ ∬ D f ( x , y ) d σ + ∬ D f ( y , x ) d σ ] \iint \limits_{D}f(x,y)d\sigma=\iint \limits_{D}f(y,x)d\sigma=\frac{1}{2}\left[\iint \limits_{D}f(x,y)d\sigma+\iint \limits_{D}f(y,x)d\sigma\right] Df(x,y)dσ=Df(y,x)dσ=21Df(x,y)dσ+Df(y,x)dσ

二重积分的计算

利用直角坐标系计算二重积分

富比尼定理(Fubini)定理

x − x- x型区域上二重积分化为“先   y \ y  y,后   x \ x  x”的二次积分:

  设 f ( x , y ) f(x,y) f(x,y)在区域 D D D y 1 ( x ) ≤ y ≤ y 2 ( x ) y_1(x)\le y\le y_2(x) y1(x)yy2(x) a ≤ x ≤ b a\le x\le b axb上的二重积分存在,且对每个 x ∈ [ a , b ] x\in [a,b] x[a,b],积分 ∫ y 1 ( x ) y 2 ( x ) f ( x , y ) d y \int_{y_1(x)}^{y_2(x)}f(x,y)dy y1(x)y2(x)f(x,y)dy都存在,则 ∬ D f ( x , y ) d x d y = ∫ a b [ ∫ y 1 ( x ) y 2 ( x ) f ( x , y ) d y ] d x ≜ ∫ a b d x ∫ y 1 ( x ) y 2 x f ( x , y ) d y \iint \limits_{D}f(x,y)dxdy=\int_a^b\left[\int_{y_1(x)}^{y_2(x)}f(x,y)dy\right]dx\triangleq\int_a^bdx\int_{y_1(x)}^{y_2{x}}f(x,y)dy Df(x,y)dxdy=ab[y1(x)y2(x)f(x,y)dy]dxabdxy1(x)y2xf(x,y)dy

y − y- y型区域上二重积分化为“先   x \ x  x,后   y \ y  y”的二次积分:

  设 f ( x , y ) f(x,y) f(x,y)在区域 D D D x 1 ( y ) ≤ y ≤ x 2 ( y ) x_1(y)\le y\le x_2(y) x1(y)yx2(y) c ≤ y ≤ d c\le y\le d cyd上的二重积分存在,且对每个 y ∈ [ c , d ] y\in [c,d] y[c,d],积分 ∫ x 1 ( y ) x 2 ( y ) f ( x , y ) d x \int_{x_1(y)}^{x_2(y)}f(x,y)dx x1(y)x2(y)f(x,y)dx都存在,则 ∬ D f ( x , y ) d x d y = ∫ c d [ ∫ x 1 ( y ) x 2 ( y ) f ( x , y ) d x ] d y ≜ ∫ a b d y ∫ y 1 ( x ) y 2 x f ( x , y ) d x \iint \limits_{D}f(x,y)dxdy=\int_c^d\left[\int_{x_1(y)}^{x_2(y)}f(x,y)dx\right]dy\triangleq\int_a^bdy\int_{y_1(x)}^{y_2{x}}f(x,y)dx Df(x,y)dxdy=cd[x1(y)x2(y)f(x,y)dx]dyabdyy1(x)y2xf(x,y)dx

利用极坐标计算二重积分

直角坐标系下二重积分与极坐标系下二重积分的转化公式: ∬ D f ( x , y ) d x d y = ∬ D ′ f ( r cos ⁡ θ , r sin ⁡ θ ) r d r d θ \iint \limits_{D}f(x,y)dxdy=\iint \limits_{D'}f(r\cos\theta,r\sin\theta)rdrd\theta Df(x,y)dxdy=Df(rcosθ,rsinθ)rdrdθ

三重积分的概念与性质

定义:

  设函数 f ( x , y , z ) f(x,y,z) f(x,y,z)在空间有界闭区域 Ω \Omega Ω上有界,将 Ω \Omega Ω任意分成 n n n个小闭区域 Δ V 1 \Delta V_1 ΔV1, Δ V 2 \Delta V_2 ΔV2,···, Δ V n \Delta V_n ΔVn(并用它们表示对应的体积)。在每个小闭区域 Δ V i \Delta V_i ΔVi上任取一点 ( ξ i , η i , ζ i ) (\xi _i,\eta _i,\zeta _i) (ξi,ηi,ζi),作和式 ∑ i = 0 n f ( ξ i , η i ) Δ σ i \sum_{i=0}^n f(\xi_i,\eta_i)\Delta\sigma_i i=0nf(ξi,ηi)Δσi如果当各小闭区域直径中的最大值 λ \lambda λ趋于0时,这个和式的极限的存在与对 Ω \Omega Ω分法及点 ( ξ i , η i , ζ i ) (\xi _i,\eta _i,\zeta _i) (ξi,ηi,ζi)的取法无关,则称函数 f ( x , y , z ) f(x,y,z) f(x,y,z) Ω \Omega Ω可积,称此极限为函数 f ( x , y , z ) f(x,y,z) f(x,y,z)在区域 Ω \Omega Ω上的三重积分,记为 ∭ Ω f ( x , y , z ) d V \iiint \limits_{\Omega}f(x,y,z)dV Ωf(x,y,z)dV ∭ Ω f ( x , y , z ) d V = lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i , η i , ζ i ) Δ V i \iiint \limits_{\Omega}f(x,y,z)dV=\lim \limits_{\lambda\to0}\sum_{i=1}^{n}f(\xi _i,\eta _i,\zeta _i)\Delta V_i Ωf(x,y,z)dV=λ0limi=1nf(ξi,ηi,ζi)ΔVi称式中 f ( x , y , z ) f(x,y,z) f(x,y,z)被积函数 f ( x , y , z ) d V f(x,y,z)dV f(x,y,z)dV被积表达式 d V dV dV体积微元 x x x y y y z z z积分变量 Ω \Omega Ω积分区域
如果在空间直角坐标系中用平行于坐标面的平面族来划分   Ω \ \Omega  Ω,则区域   Ω \ \Omega  Ω内部的体积微元 d V = d x d y d z dV=dxdydz dV=dxdydz,所以三重积分在空间直角坐标系中通常又可记为 ∭ Ω f ( x , y , z ) d x d y d z \iiint \limits_{\Omega}f(x,y,z)dxdydz Ωf(x,y,z)dxdydz但仍应将   d x d y d z \ dxdydz  dxdydz理解为体积元素   d V \ dV  dV
三重积分有着于二重积分完全类似的存在性、基本性质和对称性。

利用柱面坐标系计算三重积分

定义 柱坐标:

  空间一点 P P P柱坐标是由有序三元数组 ( r , θ , z ) (r,\theta,z) (r,θ,z)表示的,其中

  1. r r r θ \theta θ P P P x y xy xy平面上投影点的极坐标
  2. z z z是直角坐标系的竖坐标

直角坐标 ( x , y , z ) (x,y,z) (x,y,z)和极坐标 ( r , θ , z ) (r,\theta,z) (r,θ,z)的关系等式

x = r cos ⁡ θ x=r\cos\theta x=rcosθ y = r sin ⁡ θ y=r\sin\theta y=rsinθ, z = z z=z z=z,
r 2 = x 2 + y 2 r^2=x^2+y^2 r2=x2+y2 tan ⁡ θ = y x \tan\theta=\frac{y}{x} tanθ=xy
如果直角坐标系下的三重积分区域化为
Ω ′ : z 1 ( r cos ⁡ θ , r sin ⁡ θ ) ≤ z ≤ z 2 ( r cos ⁡ θ , r sin ⁡ θ ) \Omega':z_1(r\cos\theta,r\sin\theta)\le z\le z_2(r\cos\theta,r\sin\theta) Ω:z1(rcosθ,rsinθ)zz2(rcosθ,rsinθ)
D ′ : { r 1 ( θ ) ≤ r ≤ r 2 ( θ ) α ≤ θ ≤ β D': \begin{cases} r_1(\theta)\le r\le r_2(\theta)& \\ \alpha\le\theta\le\beta& \end{cases} D:{r1(θ)rr2(θ)αθβ
化为三次积分公式
∭ Ω f ( x , y , z ) d x d y d z = ∫ α β d θ ∫ r 1 ( θ ) r 2 ( θ ) r d r ∫ z 1 ( r cos ⁡ θ , r sin ⁡ θ ) z 2 ( r cos ⁡ θ , r sin ⁡ θ ) f ( r cos ⁡ θ , r sin ⁡ θ , z ) d z \iiint \limits_{\Omega}f(x,y,z)dxdydz=\int_{\alpha}^{\beta}d\theta\int_{r_1(\theta)}^{r_2(\theta)}rdr\int_{z_1(r\cos\theta,r\sin\theta)}^{z_2(r\cos\theta,r\sin\theta)}f(r\cos\theta,r\sin\theta,z)dz Ωf(x,y,z)dxdydz=αβdθr1(θ)r2(θ)rdrz1(rcosθ,rsinθ)z2(rcosθ,rsinθ)f(rcosθ,rsinθ,z)dz

利用球面坐标系计算三重积分

定义 球坐标

  空间一点 P P P球坐标由有序三元数组 ( ρ , φ , θ ) (\rho,\varphi,\theta) (ρ,φ,θ)表示,其中

  1. ρ \rho ρ为点 P P P到原点的距离
  2. φ \varphi φ O P → \overrightarrow{OP} OP z z z轴正向所成角 ( 0 ≤ φ ≤ π ) (0\le\varphi\le \pi) (0φπ)
  3. θ \theta θ为柱坐标中的角
    不同的教材中 ρ \rho ρ会用 r r r表示,请注意区分

球坐标与直角坐标和柱坐标的关系式:

r = ρ sin ⁡ φ r=\rho\sin\varphi r=ρsinφ x = r cos ⁡ θ = ρ sin ⁡ φ cos ⁡ θ x=r\cos\theta=\rho\sin\varphi\cos\theta x=rcosθ=ρsinφcosθ
z = ρ cos ⁡ φ z=\rho\cos\varphi z=ρcosφ y = r sin ⁡ θ = ρ sin ⁡ φ sin ⁡ θ y=r\sin\theta=\rho\sin\varphi\sin\theta y=rsinθ=ρsinφsinθ
ρ = x 2 + y 2 + z 2 = r 2 + z 2 \rho=\sqrt{ x^2+y^2+z^2}=\sqrt{r^2+z^2} ρ=x2+y2+z2 =r2+z2
在直角坐标系下表示的三重积分化为球面坐标系下的三重积分:
∭ Ω f ( x , y , z ) d V = ∭ Ω ′ f ( r sin ⁡ φ , r sin ⁡ φ , r cos ⁡ φ ) r 2 d r sin ⁡ φ d r d φ d θ \iiint \limits_{\Omega}f(x,y,z)dV=\iiint \limits_{\Omega'}f(r\sin\varphi,r\sin\varphi,r\cos\varphi)r^2dr\sin\varphi drd\varphi d\theta Ωf(x,y,z)dV=Ωf(rsinφ,rsinφ,rcosφ)r2drsinφdrdφdθ
Ω ′ \Omega' Ω Ω \Omega Ω在球坐标不等式组描述下的空间区域。

  • 8
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值