煤磨健康度评价说明
源码实现:http://t.csdnimg.cn/ysDHp
煤磨的健康状态评价原则是要求能够真实地反映磨机的健康状态,结合磨机故障特征及状态监测参数的分析,选取了易于测量、并能较好的反映磨机状态的参数,建立磨机状态层次评价模型。该模型从磨机的工艺状态和系统状态两个方面出发,分别评价磨机的健康状态。评价模型如下图所示:
其计算逻辑说明如下:
影响立磨运行状况的因素比较繁杂,为了能够准确全面反映磨机的运行状态,选取评价参数时遵循以下原则:
(1)针对磨机的每个关键部件,选取指标数量要适当,既要保证全面的反映评价对象的特性特征,又不能数目太多,主要以对评价过程起重要作用的程度为原则。
(2)评价磨机单个部件的几个指标都要单独刻画评价对象的一个特征,不重叠、不关联。
(3)每个评价指标应具有代表性、可比性,并且符合评价对象的客观规律,还要保证易于操作、可测量。
- 对于正向参数,即数值越大性能越优、健康度越高的参数,其健康度计算公式如下:
- 对于负向参数,即数值越小性能越优、健康度越高的参数,其健康度计算公式如下:
- 对于中间型参数,即数值越接近标准值性能越优、健康度越高的参数,其健康度计算公式如下:
其中, x , x0 分别为单个指标的测量值和标准值,[xmin , xmax ]为该指标的阈值范围; x’为指标的量化值,取值范围为[0,1];当指标测量值超过阈值范围时, x’ =0;当指标测量值与标准值重合时, x’ =1,表示性能最佳,状态最好。
有了参数的健康度结果后,为了计算各部件的健康度,还需要每个参数的权重,权重计算包括层次权重、熵权、组合权重、变权重计算4个计算步骤。
- 引入函数 f(x,y),用来表示x与y对评价对象的重要性标度,约定 f(x,y)=1/f(y, x)。重要性一般是用 1~9 标度,如下所示:
- 判断矩阵。设 X= (x1,x2,…,xn)是全部因素的集,可根据专家经验按上表的标度,对全部因素作两两之间的比较,构造判断矩阵
,其中)
且 cii=1。
- 权重。根据判断矩阵 C,计算它的最大特征根lmax ,即求满足如下条件的lmax:
求出矩阵 C 关于lmax 的特征向量,经过归一化处理后的各元素即为各参数的权重,即:
若某评价参数 xj 有 m 个数据,其信息熵为:
其中, pij为参数 xj 的归一化值,第 j 个参数的熵权wj 为:
其中,wj为组合权重,w’j为为层次分析法所得权重, 为熵权重。
,GAHP为层次分析法中各分量差异系数:
其中,n 为指标个数, pi为层次分析法中权重系数从小到大的重新排序。
-
变权重计算
上述组合赋权法求得权重,已经能够体现各参数的相对重要性,但仍然不能及时跟踪参数的波动。例如,当磨机关键部件的某个参数数值严重偏离标准值时,往往可以说明该部件的健康状态已经出了较大问题,如果利用常权重来进行评估,当其他指标无变化或变化不大时,就可能会掩盖该指标的消极作用,造成评价结果显示正常状态,就会丧失对磨机状态的跟踪能力。而变权重理恰好可以突出各参数的偏离程度,反映参数状态的均衡性。因此,这里使用变权理论来修正组合权重,让参数权重随其状态及时变化,弥补异常参数的“短板效应”。为此,引入变权公式为:
上述式中,s(x) 为均衡函数。
由于指数型函数具有结构简单、反应灵敏、可扩展性强等优点,以此建立“惩罚型”状态变权向量,对于偏离正常值的指标,根据指标超限的偏离程度调整权重大小;指标偏离越严重,其状态变权向量越大,相应的变权权重也就越大,则均衡函数为:
式中, xj 为参数监测数值, l j 为参数的惩罚阈值(即参数标准值);ε为惩罚水平(ε>0),当ε越大时,惩罚效果越明显,即指标微小变动就会造成评价结果波动;xmax、xmin 分别为第 j 项指标的阈值区间上、下限。
平台指标工具,支持以鱼骨图的方式,直观展现计算指标的来龙去脉,并能查看指标实时值,进行重计算等操作,如下图所示:
算法demo源码:https://download.csdn.net/download/qq_37279279/89567442