逐字解释CAP

只有静下心来才能学得扎实

CAP是什么

  • CAP 中的 C 是 一致性(Consistency),A 是可用性(Availability),P 是分区容错性(Partition tolerance
    • 分区又是什么:在分布式网络中,不同的系统之间一旦失去通信,就会被分割成不同的孤岛,也就是不同的区域,这就是分区
    • 容错呢:错就是造成分区的原因,可能是网络故障,或者其他原因,容错是对系统说的,就是说就算发生了网络故障,也要包容它,并保证系统继续对外提供服务,也就是保证 A 或 P
    • 所以分布式系统一定得是P的,如果不是 P 的,除非不是分布式服务。
    • A:可用性,任何时刻,对于客户端的请求能立刻返回结果,保证可以使用。
    • C:一致性,数据在多个服务实例之间是一样的,客户访问哪个返回的数据结果一样,是强一致性(相对BASE理论)。
  • CAP定理,指的是在分布式系统中,C, A, P 这三个系统最多只能满足其中的两个。对于分布式系统,分区是客观存在的,也可以说是 A P 二选一。
    • 如果选择了 C,那系统可能会出现短时不可用,但是可用的时候,数据一定是一致的。
    • 如果选择了 A,那系统不会出现不可用的情况,但是可能同时多次请求的结果会不一致(在数据同步的过程中)。
      在这里插入图片描述

举个例子–为什么不能三者兼得

在这里插入图片描述

背景

假如现在有两个分区N1和N2,N1和N2分别有不同的分区存储D1和D2,以及不同的服务S1和S2。

场景

  1. 首先用户访问了N1,修改了D1的数据。
  2. 用户再次访问,请求落在了N2。此时D1和D2的数据不一致。
  3. 此时服务如何返回,就决定了是选 A 还是 P

分析

  • 此时 S1 和 S2 的数据不一致,由于网络阻塞的时间是不确定的,也就是说 S1 和 S2 之间的数据同步时间不确定。
  • 如果立刻返回结果,保证了可用性,但是此时数据不一致,无法满足 一致性
  • 如果等系统同步完成后再返回结果,保证了一致性,但是可能超时导致不满足可用性

CAP 取舍

  • 对于多数大型互联网应用的场景,主机众多、部署分散,节点故障、网络故障是常态,必须保证P;应用的目的是提供服务,因此通常也要保证A。既然要保证P和A,就只能不同程度的舍弃C,牺牲一些用户体验。严格来讲,部分应用的A也不必保证100%,因此,主流做法是首要保障P、在A和C之间取舍、重A轻C。
  • 但是,对于金融服务,必须保证C;大规模金融服务几乎必然涉及网络分区,所以也要保证P;为了保证C、P,只能牺牲A(停止服务)。对于某些特殊的金融服务,需要7*24小时提供服务,则改为牺牲部分P(如单节点主从备份,故障切换),保障C、A。

注册中心应用

微服务中常用的注册中心有ZooKeeper、Eureka、Nacos。那么它们分别满足 CAP 中的哪几个原则呢?

  • zookeeper: 满足 CP,当节点选举的时候,无法提供服务,即不保证A
    • 选举过程:待补充
  • euraka: 满足 AP,只有有一个节点,都会返回结果,但是结果可能不是最新的
  • nacos: AP 和 CP 都支持
    • 如何切换两个模式,实现原理:待补充

参考文章

  • https://cloud.tencent.com/developer/article/1882578
  • https://monkeysayhi.github.io/2018/03/09/%E5%88%86%E5%B8%83%E5%BC%8F%E7%90%86%E8%AE%BA%EF%BC%9ACAP%E3%80%81BASE%E4%B8%8EACID/

相关问题

  • CAP 是什么
  • CAP 都有哪些组合模式,各有啥优缺点
  • 微服务注册中心是用的哪些组合模式
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值