一、背景
这里介绍的是TensorFlow-GPU版本,因为CPU版本的安装过程相对容易,想安装CPU版本的请参照其他帖子。
想要安装GPU版本的,需要查看一下自己的电脑显卡是否支持GPU版本。
大家可以可以先装一下Anaconda,为自己的深度学习程序创建一个独立的虚拟环境。默认大家已经安装了Anaconda,装没装都没关系,只不过有了Anaconda对于我来说更加方便。
二、平台介绍
笔者的系统为Win10系统。其中笔者的安装版本分别为python3.7,CUDA10.1。想在Win10系统上搭建Tensorflow开发环境,至少需要安装:
1.python
python的安装不作过多说明。
2.CUDA和CUDNN
(1)CUDA是显卡厂商NVIDIA推出的运算平台。 CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。 它包含了CUDA指令集架构(ISA)以及GPU内部的并行计算引擎。
(2)cuDNN是用于深度神经网络的GPU加速库。它强调性能、易用性和低内存开销。NVIDIA cuDNN可以集成到更高级别的机器学习框架中,如加州大学伯克利分校的流行CAFFE软件。
3.Tensorflow GPU版
三、安装过程
1.安装python
大家可以查看其他相关安装python的帖子,推荐使用python3.x版本,不要使用python 2.x版本。
2.安装Tensorflow-GPU版本
直接使用命令:
(1)有anaconda的话,conda install --channel https://conda.anaconda.org/anaconda tensorflow-gpu=1.13.1
安装过程比较漫长,大家就等着就好。
Tensorflow版本的选择视情况而定,Tensorflow版本确定下来后,就需要选择对应版本的CUDA和CUDNN。
2.安装CUDA
(1)查看自己的显卡型号支持的CUDA版本可参考此篇帖子:https://blog.csdn.net/qq_36652619/article/details/82971104
可以看到我的显卡支持10.2版本的CUDA,所以进入下一步下载并安装CUDA
(2)CUDA下载地址:https://developer.nvidia.com/cuda-toolkit-archive
(3)下载完CUDA,安装即可。
安装完CUDA,查看是否安装成功及查看其版本的命令为nvcc -V。
3.安装cuDNN
cuDNN的版本需要根据CUDA的版本进行确定。
作为cuda的补充,安装简单多了,只需要把下载后的压缩文件解压缩,分别将cuda/include、cuda/lib、cuda/bin三个目录中的内容拷贝到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1对应的include、lib、bin目录下即可。