本文转自:
50行代码实现GAN(PyTorch)-PyTorch 中文网
【小修改】用pytorch实现GAN——mnist(含有全部注释和网络思想)_清凌的博客-CSDN博客
一、什么是 GAN?
在进入技术层面之前,为照顾新入门的开发者,先来介绍下什么是 GAN。
2014 年,Ian Goodfellow 和他在蒙特利尔大学的同事发表了一篇震撼学界的论文。没错,我说的就是《Generative Adversarial Nets》,这标志着生成对抗网络(GAN)的诞生,而这是通过对计算图和博弈论的创新性结合。他们的研究展示,给定充分的建模能力,两个博弈模型能够通过简单的反向传播(backpropagation)来协同训练。
这两个模型的角色定位十分鲜明。给定真实数据集 R,G 是生成器(generator),它的任务是生成能以假乱真的假数据;而 D 是判别器 (discriminator),它从真实数据集或者 G 那里获取数据, 然后做出判别真假的标记。Ian Goodfellow 的比喻是,G 就像一个赝品作坊,想要让做出来的东西尽可能接近真品,蒙混过关。而 D 就是文物鉴定专家,要能区分出真品和高仿(但在这个例子中,造假者 G 看不到原始数据,而只有 D 的鉴定结果——前者是在盲干)。
理想情况下,D 和 G 都会随着不断训练,做得越来越好——直到 G 基本上成为了一个“赝品制造大师”,而 D 因无法正确区分两种数据分布输给 G。
实践中,Ian Goodfellow 展示的这项技术在本质上是:G 能够对原始数据集进行一种无监督学习,找到以更低维度的方式(lower-dimensional manner)来表示数据的某种方法。而无监督学习之所以重要,就好像 Yann LeCun 的那句话:“无监督学习是蛋糕的糕体”。这句话中的蛋糕,指的是无数学者、开发者苦苦追寻的“真正的 AI”。
二、核心思想
判断器的任务是尽力将假的判断为假的,将真的判断为真的;生成器的任务是使生成的越真越好。两者交替迭代训练。
三、核心代码
real_label = Variable(torch.ones(num_img)).cuda() # 定义真实的图片label为1
fake_label = Variable(torch.zeros(num_img)).cuda() # 定义假的图片的label为0
# 1, D: 真的判断为真,假的判断为假
real_out = D(real_img) # 将真实图片放入判别器中
real_out = real_out.squeeze() # (128,1) -> (128,)
d_loss_real = criterion(real_out, real_label) # 真的判断为真
fake_img = G(z) # 随机噪声放入生成网络中,生成一张假的图片
fake_out = D(fake_img) # 判别器判断假的图片,
fake_out = fake_out.squeeze() # (128,1) -> (128,)
d_loss_fake = criterion(fake_out, fake_label) # 得到假的图片的loss
d_loss = d_loss_real + d_loss_fake # 损失包括判真损失和判假损失
# 然后反向传播
# 2, G:生成的越真越好
fake_img = G(z) # 随机噪声输入到生成器中,得到一副假的图片
fake_out = D(fake_img) # 经过判别器得到的结果
fake_out = fake_out.squeeze() # (128,1) -> (128,)
g_loss = criterion(fake_out, real_label) # 得到的假的图片与真实的图片的label的loss
# 然后反向传播
四、用 PyTorch 训练 GAN
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
# coding=utf-8
import torch.autograd
import torch.nn as nn
from torch.autograd import Variable
from torchvision import transforms
from torchvision import datasets
from torchvision.utils import save_image
import os
# 创建文件夹
if not os.path.exists('./img'):
os.mkdir('./img')
def to_img(x):
out = 0.5 * (x + 1)
out = out.clamp(0, 1) # Clamp函数可以将随机变化的数值限制在一个给定的区间[min, max]内:
out = out.view(-1, 1, 28, 28) # view()函数作用是将一个多行的Tensor,拼接成一行
return out
batch_size = 128
num_epoch = 100
z_dimension = 100
# 图像预处理
img_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,)) # (x-mean) / std
])
# mnist dataset mnist数据集下载
mnist = datasets.MNIST(
root='./data/', train=True, transform=img_transform, download=True
)
# data loader 数据载入
dataloader = torch.utils.data.DataLoader(
dataset=mnist, batch_size=batch_size, shuffle=True
)
# 定义判别器 #####Discriminator######使用多层网络来作为判别器
# 将图片28x28展开成784,然后通过多层感知器,中间经过斜率设置为0.2的LeakyReLU激活函数,
# 最后接sigmoid激活函数得到一个0到1之间的概率进行二分类。
class discriminator(nn.Module):
def __init__(self):
super(discriminator, self).__init__()
self.dis = nn.Sequential(
nn.Linear(784, 256), # 输入特征数为784,输出为256
nn.LeakyReLU(0.2), # 进行非线性映射
nn.Linear(256, 256), # 进行一个线性映射
nn.LeakyReLU(0.2),
nn.Linear(256, 1),
nn.Sigmoid() # 也是一个激活函数,二分类问题中,
# sigmoid可以班实数映射到【0,1】,作为概率值,
# 多分类用softmax函数
)
def forward(self, x):
x = self.dis(x)
return x
# ###### 定义生成器 Generator #####
# 输入一个100维的0~1之间的高斯分布,然后通过第一层线性变换将其映射到256维,
# 然后通过LeakyReLU激活函数,接着进行一个线性变换,再经过一个LeakyReLU激活函数,
# 然后经过线性变换将其变成784维,最后经过Tanh激活函数是希望生成的假的图片数据分布
# 能够在-1~1之间。
class generator(nn.Module):
def __init__(self):
super(generator, self).__init__()
self.gen = nn.Sequential(
nn.Linear(100, 256), # 用线性变换将输入映射到256维
nn.ReLU(True), # relu激活
nn.Linear(256, 256), # 线性变换
nn.ReLU(True), # relu激活
nn.Linear(256, 784), # 线性变换
nn.Tanh() # Tanh激活使得生成数据分布在【-1,1】之间,因为输入的真实数据的经过transforms之后也是这个分布
)
def forward(self, x):
x = self.gen(x)
return x
# 创建对象
D = discriminator()
G = generator()
if torch.cuda.is_available():
D = D.cuda()
G = G.cuda()
# 首先需要定义loss的度量方式 (二分类的交叉熵)
# 其次定义 优化函数,优化函数的学习率为0.0003
criterion = nn.BCELoss() # 是单目标二分类交叉熵函数
d_optimizer = torch.optim.Adam(D.parameters(), lr=0.0003)
g_optimizer = torch.optim.Adam(G.parameters(), lr=0.0003)
# ##########################进入训练##判别器的判断过程#####################
for epoch in range(num_epoch): # 进行多个epoch的训练
for i, (img, _) in enumerate(dataloader):
num_img = img.size(0)
# view()函数作用是将一个多行的Tensor,拼接成一行
# 第一个参数是要拼接的tensor,第二个参数是-1
# =============================训练判别器==================
img = img.view(num_img, -1) # 将图片展开为28*28=784
real_img = Variable(img).cuda() # 将tensor变成Variable放入计算图中
real_label = Variable(torch.ones(num_img)).cuda() # 定义真实的图片label为1
fake_label = Variable(torch.zeros(num_img)).cuda() # 定义假的图片的label为0
# ########判别器训练train#####################
# 分为两部分:1、真的图像判别为真;2、假的图像判别为假
# 计算真实图片的损失
real_out = D(real_img) # 将真实图片放入判别器中
real_out = real_out.squeeze() # (128,1) -> (128,)
d_loss_real = criterion(real_out, real_label) # 得到真实图片的loss
real_scores = real_out # 得到真实图片的判别值,输出的值越接近1越好
# 计算假的图片的损失
z = Variable(torch.randn(num_img, z_dimension)).cuda() # 随机生成一些噪声
fake_img = G(z).detach() # 随机噪声放入生成网络中,生成一张假的图片。 # 避免梯度传到G,因为G不用更新, detach分离
fake_out = D(fake_img) # 判别器判断假的图片,
fake_out = fake_out.squeeze() # (128,1) -> (128,)
d_loss_fake = criterion(fake_out, fake_label) # 得到假的图片的loss
fake_scores = fake_out # 得到假图片的判别值,对于判别器来说,假图片的损失越接近0越好
# 损失函数和优化
d_loss = d_loss_real + d_loss_fake # 损失包括判真损失和判假损失
d_optimizer.zero_grad() # 在反向传播之前,先将梯度归0
d_loss.backward() # 将误差反向传播
d_optimizer.step() # 更新参数
# ==================训练生成器============================
# ###############################生成网络的训练###############################
# 原理:目的是希望生成的假的图片被判别器判断为真的图片,
# 在此过程中,将判别器固定,将假的图片传入判别器的结果与真实的label对应,
# 反向传播更新的参数是生成网络里面的参数,
# 这样可以通过更新生成网络里面的参数,来训练网络,使得生成的图片让判别器以为是真的
# 这样就达到了对抗的目的
# 计算假的图片的损失
z = Variable(torch.randn(num_img, z_dimension)).cuda() # 得到随机噪声
fake_img = G(z) # 随机噪声输入到生成器中,得到一副假的图片
output = D(fake_img) # 经过判别器得到的结果
output = output.squeeze()
g_loss = criterion(output, real_label) # 得到的假的图片与真实的图片的label的loss
# bp and optimize
g_optimizer.zero_grad() # 梯度归0
g_loss.backward() # 进行反向传播
g_optimizer.step() # .step()一般用在反向传播后面,用于更新生成网络的参数
# 打印中间的损失
if (i + 1) % 100 == 0:
print('Epoch[{}/{}],d_loss:{:.6f},g_loss:{:.6f} '
'D real: {:.6f},D fake: {:.6f}'.format(
epoch, num_epoch, d_loss.data.item(), g_loss.data.item(),
real_scores.data.mean(), fake_scores.data.mean() # 打印的是真实图片的损失均值
))
if epoch == 0:
real_images = to_img(real_img.cpu().data)
save_image(real_images, './img/real_images.png')
fake_images = to_img(fake_img.cpu().data)
save_image(fake_images, './img/fake_images-{}.png'.format(epoch + 1))
# 保存模型
torch.save(G.state_dict(), './generator.pth')
torch.save(D.state_dict(), './discriminator.pth')
五、效果
迭代至100次, loss
Epoch[99/100],d_loss:0.843549,g_loss:2.033646 D real: 0.750062,D fake: 0.285924
Epoch[99/100],d_loss:0.686604,g_loss:2.199523 D real: 0.787562,D fake: 0.240696
效果图
fake real
效果还行,就是噪声多。