毕业设计:基于深度学习的共享单车需求预测系统

目录

前言

课题背景和意义

实现技术思路

一、算法理论基础

1.1 预测模型

1.2 卷积神经网络

二、 数据集

三、实验及结果分析

最后


前言

    📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。

🚀对毕设有任何疑问都可以问学长哦!

    选题指导:

        最新最全计算机专业毕设选题精选推荐汇总

        大家好,这里是海浪学长毕设专题,本次分享的课题是

       🎯基于深度学习的共享单车需求预测系统

课题背景和意义

       共享单车已成为城市出行的重要方式之一,然而,有效地预测共享单车的需求量对于共享单车运营商来说是一个重要的挑战。过多的单车投放可能导致资源浪费,而过少的单车则会导致用户无法满足出行需求。预测系统可以帮助共享单车运营商进行智能化的运营决策。根据预测结果,运营商可以合理安排单车的调度和维护,提高运营效率和服务水平。此外,预测系统还可以为用户提供准确的单车可用性信息,使用户能够更好地计划出行,并提供更好的出行体验。因此,建立一个准确的共享单车需求预测系统对于优化共享单车运营、提高用户体验和降低运营成本至关重要。

实现技术思路

一、算法理论基础

1.1 预测模型

       预测模型使用小波变换对原始数据进行降噪处理,并采用了sym3小波函数来进行信号分解和重构。对数据集进行了归一化处理,并将其转换为监督学习形式,并将数据集划分为训练集和测试集。最后,构建了两个模型,一个是仅考虑时间序列的LSTM模型,另一个是既捕捉时间特性又捕捉空间特性的conv-LSTM模型。通过对训练集和验证集数据的训练和优化模型参数,使用模型对测试集进行预测,并对预测结果进行反归一化操作,最终得到了预测值。这个研究通过综合运用小波变换和深度学习模型,为时间序列数据的降噪处理和预测提供了一个全面而有效的方法。

毕业设计:基于深度学习的共享单车需求预测系统

       小波变换(Wavelet Transform, WT)是一种信号时频分析方法,适用于处理频率随时间变化的非线性和非平稳信号。它具有"变焦"特性,可以通过调整窗口形状、时间窗和频率窗来实现对信号的局部分析。小波变换的步骤包括以下四个步骤:

  • 计算相似性:通过计算小波函数(ψ)与原始函数(f(t))的内积,得到相似性程度值(C1)。
  • 平移变换:将小波函数(ψ)向右平移τ个单位,得到平移后的小波函数(ψτ),然后将其与原始函数(f(t))进行内积计算,得到系数(C2)。
  • 频率变换:改变小波函数的频率,得到变换后的小波函数(ψ2),然后重复步骤1和步骤2,计算相似性程度值(C)。
  • 扩展变换:不断扩展小波函数,重复步骤1、步骤2和步骤3,以获取更多尺度的小波变换系数。

毕业设计:基于深度学习的共享单车需求预测系统

       小波变换阈值去噪法是一种计算量较小且易于处理的噪声消除方法。在小波分解后,信号被分为两组具有不同幅值的小波系数,一般认为幅值较大的小波系数对应有用信号,而幅值较小的小波系数对应噪声。小波变换阈值法的目标是寻找一个合适的阈值,对两组小波系数进行适当处理。大于阈值的小波系数被选择保留,而小于阈值的小波系数根据实际情况进行处理。

       神经网络是一种强大的计算模型,已被广泛应用于各个领域。长短期记忆神经网络(LSTM)是循环神经网络(RNN)的一种分支。神经网络由许多节点(神经元)和节点之间的连接组成。每个神经元都有一个激活函数,并且连接线上的权重代表连接信号的重要性。神经网络模型包含输入层、输出层和隐藏层。在设计神经网络时,输入层的节点数应与输入特征的维度匹配,输出层的节点数应与输出的维度匹配,而隐藏层的节点数是可自定义的。通常使用网格搜索(Grid Search)来确定隐藏层节点数,以达到最佳预测效果。

毕业设计:基于深度学习的共享单车需求预测系统

       普通的神经网络中,所有观测值都是独立的,无法有效处理观测值之间的复杂时间关系,如语音、文本等序列数据。然而,循环神经网络(RNN)能够有效解决这类问题。RNN将序列中某一时刻的输出作为下一时刻的输入,与普通神经网络不同,RNN的信息流可以从输出单元返回到隐藏单元。这种信息流的反馈机制使得RNN能够捕捉到序列数据中的时间依赖关系。

毕业设计:基于深度学习的共享单车需求预测系统

       LSTM是一种特殊的循环神经网络,相比于RNN,LSTM引入了记忆单元和门控单元来保存历史信息和长期状态,并使用门控单元来控制信息流的传递。LSTM通过记忆单元(cell)来存储和传递信息,这样可以解决RNN中的梯度消失问题。而门控单元包括输入门、遗忘门和输出门,它们通过可学习的门控机制来决定何时记忆、遗忘和输出信息。输入门控制新信息的输入,遗忘门控制旧信息的遗忘,输出门控制输出的信息。通过这种门控机制,LSTM可以选择性地保留和传递重要的历史信息,从而有效地处理长期依赖关系。

毕业设计:基于深度学习的共享单车需求预测系统

 

1.2 卷积神经网络

       卷积长短期记忆神经网络(ConvLSTM)是一种结合了卷积神经网络(CNN)和长短期记忆神经网络(LSTM)的模型,用于处理具有时空关系的数据。它在时间维度上使用LSTM的记忆单元,同时在空间维度上使用卷积操作。ConvLSTM的基本原理是在LSTM的循环结构中引入卷积操作。与传统的LSTM不同,ConvLSTM的输入和输出都是三维的张量,包括时间、高度和宽度维度。每个时间步骤的输入通过卷积层进行处理,以在空间维度上捕捉特征。卷积核的大小和步幅可以根据实际需求进行选择。

毕业设计:基于深度学习的共享单车需求预测系统

       在ConvLSTM中,每个LSTM单元的输入、遗忘和输出门都与卷积操作相关联。这些门控机制通过卷积操作来决定在每个时间步骤中如何更新和传递信息。具体而言,输入门控制新的输入信息,遗忘门控制旧的记忆信息,输出门控制输出的信息。通过这种方式,ConvLSTM可以有效地处理时空关系,并且在图像序列预测、视频分析等任务中表现出色。

       ConvLSTM的网络结构可以根据具体问题进行设计,可以包含多个卷积层和多个ConvLSTM层。在训练过程中,通常使用反向传播算法和梯度下降来更新网络参数,以最小化预测误差。

毕业设计:基于深度学习的共享单车需求预测系统

二、 数据集

       由于网络上没有现有的合适的数据集,我决定自己进行数据采集,并制作一个全新的数据集,用于共享单车流量预测的研究。自制数据集将为共享单车流量预测的研究提供准确、可靠的数据基础。通过分析这些数据,我将能够探索共享单车使用的时空模式、用户行为特征以及与天气、节假日等因素的关联。这将有助于改进共享单车系统的运营策略,提高车辆调度的效率,以及优化用户体验。

毕业设计:基于深度学习的共享单车需求预测系统

三、实验及结果分析

       选择合适的算法和模型架构是训练的基础。对于预测共享单车需求量的任务,可以考虑使用一些常见的回归算法,如线性回归、决策树回归、支持向量回归等,或者使用一些更复杂的模型,如神经网络、随机森林、梯度提升树等。选择合适的模型需要根据具体问题和数据集的特点进行权衡和实验。

from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error

# 划分训练集和验证集
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建随机森林回归器对象
model = RandomForestRegressor(n_estimators=100, random_state=42)

# 模型训练
model.fit(X_train, y_train)

# 在验证集上进行预测
y_pred = model.predict(X_val)

# 评估模型性能
mse = mean_squared_error(y_val, y_pred)
print("均方误差 (MSE):", mse)

       准备合适的训练数据是至关重要的。在这个案例中,需要准备包括历史共享单车需求量、天气气象数据、POI数据和区划数据等的训练数据。这些数据需要经过预处理和清洗,包括处理缺失值、异常值和数据格式转换等,以确保数据的准确性和一致性。

import pandas as pd
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler

# 读取历史共享单车需求量数据
demand_data = pd.read_csv("demand.csv")

# 读取天气气象数据
weather_data = pd.read_csv("weather.csv")

# 读取POI数据
poi_data = pd.read_csv("poi.csv")

# 读取区划数据
district_data = pd.read_csv("district.csv")

# 处理缺失值
imputer = SimpleImputer(strategy="mean")  # 使用均值填充缺失值
demand_data = imputer.fit_transform(demand_data)

# 处理异常值
demand_data = demand_data[(demand_data > 0) & (demand_data < 1000)]  # 假设需求量在0到1000之间

# 数据格式转换
weather_data["date"] = pd.to_datetime(weather_data["date"])  # 将日期列转换为日期类型

# 特征标准化
scaler = StandardScaler()
weather_data["temperature"] = scaler.fit_transform(weather_data[["temperature"]])  # 对温度特征进行标准化

# 合并数据
merged_data = pd.merge(demand_data, weather_data, on="date", how="inner")
merged_data = pd.merge(merged_data, poi_data, on="district_id", how="left")
merged_data = pd.merge(merged_data, district_data, on="district_id", how="left")

# 去除多余的列
merged_data = merged_data.drop(["district_id", "date"], axis=1)

       将准备好的训练数据划分为训练集和验证集。训练集用于模型的训练和参数优化,而验证集用于评估模型在未见过的数据上的性能表现。可以使用交叉验证等技术来更好地评估模型的泛化能力。

from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.ensemble import RandomForestRegressor

# 划分特征和目标变量
X = merged_data.drop("demand", axis=1)
y = merged_data["demand"]

# 划分训练集和验证集
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建随机森林回归器对象
model = RandomForestRegressor(n_estimators=100, random_state=42)

# 在训练集上进行交叉验证评估模型性能
cv_scores = cross_val_score(model, X_train, y_train, cv=5, scoring="neg_mean_squared_error")

# 打印交叉验证的均方误差(MSE)
print("交叉验证均方误差(MSE):", -cv_scores.mean())

# 模型训练
model.fit(X_train, y_train)

# 在验证集上进行预测
y_pred = model.predict(X_val)

# 评估模型性能
mse = mean_squared_error(y_val, y_pred)
print("验证集均方误差(MSE):", mse)

       使用选择的模型和训练数据进行模型训练。训练过程中,根据选择的损失函数和优化算法,通过迭代优化模型参数,使模型能够最小化预测误差并提高性能。训练的过程需要关注过拟合和欠拟合等问题,并进行相应的调整和优化。

from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error

# 创建随机森林回归器对象
model = RandomForestRegressor(n_estimators=100, random_state=42)

# 模型训练
model.fit(X_train, y_train)

# 在训练集上进行预测
y_train_pred = model.predict(X_train)

# 在验证集上进行预测
y_val_pred = model.predict(X_val)

# 评估训练集和验证集上的性能
train_mse = mean_squared_error(y_train, y_train_pred)
val_mse = mean_squared_error(y_val, y_val_pred)

print("训练集均方误差(MSE):", train_mse)
print("验证集均方误差(MSE):", val_mse)

       评估训练后的模型性能。使用独立的测试数据集对模型进行评估,计算其在预测共享单车需求量上的准确性和其他评估指标,如均方根误差(RMSE)、平均绝对误差(MAE)等。如果模型的性能不满足要求,可以进行调参、模型调整和特征工程等进一步的优化。

最后

我是海浪学长,创作不易,欢迎点赞、关注、收藏。

毕设帮助,疑难解答,欢迎打扰!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值