目录
前言
📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。
🚀对毕设有任何疑问都可以问学长哦!
选题指导:
大家好,这里是海浪学长毕设专题,本次分享的课题是
🎯基于深度学习的智能车辆环境感知系统中行人检测与跟踪技术
课题背景和意义
随着智能交通系统的快速发展,智能车辆环境感知成为保障行车安全和提高驾驶体验的关键技术。在智能车辆中,准确、实时地检测和跟踪行人是保障行车安全的重要任务。基于深度学习的行人检测与跟踪技术能够利用图像和视频数据,通过训练深度神经网络模型来实现高精度和高效率的行人检测与跟踪,从而提供可靠的环境感知能力。因此,开发基于深度学习的智能车辆环境感知系统中的行人检测与跟踪技术具有重要的研究意义和应用价值。
实现技术思路
一、算法理论基础
1.1 卷积神经网络
卷积神经网络(CNN)是一种用于处理二维数据(如图像)的深度学习模型。它的结构包括输入层、卷积层、激活函数层、池化层、全连接层和输出层。输入层接收原始数据,卷积层通过卷积操作提取图像的局部特征,激活函数层引入非线性特性,池化层进行下采样操作减少特征图的尺寸,全连接层将特征图转换为一维向量并与隐藏层相连接,输出层用于最终的分类或预测。通过堆叠多个卷积层、激活函数层和池化层,CNN能够逐渐学习到更高层次的抽象特征,从而实现对输入数据的有效表示和分类。CNN还可以使用正则化技术如批归一化层和dropout层来提高模型的泛化能力。
激活函数在卷积神经网络中的主要作用是引入非线性计算,增强网络的学习能力和表征能力。它能够选择性地传递特征图中的重要信息到下一层处理环节,从而提升网络的数据拟合能力。如果在神经网络中使用线性函数而不是激活函数,网络层的计算将变为线性计算,导致输入与输出之间呈现线性关系,限制了网络模型的学习能力。而非线性函数能够使神经网络逼近任何函数,显著提高网络的数据拟合能力。
损失函数在训练优质网络模型中起着关键作用。根据不同任务的要求,设置适当的损失函数来计算预测值与真实值之间的误差。通过调整网络模型的参数,不断优化损失函数,逐渐减小误差值,使网络模型达到最佳状态。当误差值较大时,反向传播会大幅度调节网络权重;反之,误差较小时则进行小幅度调节。在目标检测和目标跟踪领域,常用的损失函数包括分类损失和回归损失。
1.2 目标检测算法
目标检测的检测过程可以大致分为三个关键步骤:候选区域的确定与提取、特征提取和分类与回归。候选区域的确定与提取是目标检测的基础部分。它的目标是在输入图像上生成可能包含目标的区域,即候选区域。常用的候选区域提取方法包括滑动窗口、选择性搜索和区域生成网络等。滑动窗口方法通过以窗口形式遍历整张图像来寻找可能包含目标的区域,但会产生大量冗余窗口,导致计算量大。选择性搜索利用传统图像特征提取方法来减少冗余窗口,并提高提取速度,而且窗口大小不受限制。区域生成网络是基于深度学习的候选区域生成方法,具有快速生成区域和较高的召回率等优点。
特征提取是将输入图像(如RGB格式)转换为易于解析、存储和处理的特征形式的过程。在目标检测中,通常使用卷积神经网络进行特征提取。特征提取通过对图像执行卷积操作生成多通道特征图,并通过多次卷积处理生成特征向量。不同通道的特征图携带不同的信息,通过卷积神经网络获取的特征具有丰富的语义信息,包括目标的颜色、外观、位置等多种特征。特征提取具有处理方便、速度快和良好的泛化性能等优势。
分类与回归是目标检测中判断目标类别和位置坐标的关键步骤。分类操作通过分类器对特征向量进行判断,确定目标的类别。目标位置则是通过训练好的回归模型获取,并对预测的目标框进行微调。分类和回归操作一起完成目标的识别和定位。
1.3 多目标跟踪
多目标跟踪的实质是通过前几帧图像序列中的目标动态信息来预测当前帧的目标位置,并根据检测结果对预测位置进行修正,以连续稳定地输出位置信息。跟踪的数据处理流程包括初始化目标状态、外观模型、观测模型和状态模型。
初始化目标状态通常通过目标检测器检测获得,可以是目标检测框或目标位置数据。外观模型的作用是提取目标的外观特征并估计连续帧之间特征的误差,通过计算误差判断是否为同一目标,从而使跟踪器具有较好的鲁棒性。观测模型分为生成式和判别式两种形式。生成式方法在连续图像序列中使用类似模板匹配的方法寻找与目标模板最相似的对象作为跟踪目标,而判别式方法使用类似图像分类的方法,通过大量数据训练分类器来识别背景和目标,并根据分类的置信度确定跟踪目标。状态模型根据前几帧目标的历史运动状态建立运动数学模型,根据模型的预测结果判断下一帧中目标可能存在的位置。
在多目标跟踪方法中,判别式方法结合了机器学习和图像特征等方法,使跟踪目标不再需要复杂的数学模型,同时展现出较好的鲁棒性。因此,大多数跟踪器采用判别式方法。目前,在工程应用中,多目标跟踪技术主要使用目标边界框(Bounding Box)跟踪方法,即使用检测器获取检测框,并将其作为跟踪器的输入,从而执行目标跟踪。然而,在跟踪过程中,也需要针对多种尺度的目标进行测试,以获取相对合适的尺度。
二、 数据集
2.1 数据集
由于网络上没有现有的合适的数据集,我们决定自己进行网络爬取,收集了大量与智能车辆环境感知相关的图像和视频数据。通过网络爬取和筛选,我们获得了包含各种交通场景、行人行为和光照条件的数据集。这个自制的数据集提供了真实且多样的环境感知数据,为行人检测与跟踪技术的研究提供了准确、可靠的数据支持。我们相信这个自制的数据集将为智能车辆环境感知技术的发展做出有力的支持,并推动该领域的进一步研究。
2.2 数据扩充
我们对自制的数据集进行了数据扩充和数据标注。数据扩充包括对图像和视频进行几何变换、光照调整和噪声添加等操作,以增加数据的多样性和数量。数据扩充包括对图像和视频进行几何变换、光照调整和噪声添加等操作,以增加数据的多样性和数量。数据标注则是对图像和视频中的行人进行框选和标记,以便训练深度学习模型进行行人检测与跟踪。
三、实验及结果分析
3.1 实验环境搭建
3.2 模型训练
行人检测与跟踪技术设计思路如下:
-
行人检测:使用深度学习模型来实现高效准确的行人检测。首先,采集大规模的带有标注行人的图像数据集,并进行数据预处理,包括图像增强、裁剪和缩放等操作,以提高模型的鲁棒性。然后,构建卷积神经网络(CNN)模型,如基于目标检测的模型(如Faster R-CNN、YOLO等)或基于单阶段检测的模型(如SSD、RetinaNet等),用于从图像中准确地定位和识别行人。通过在训练集上进行端到端的监督学习,优化模型参数,使其能够在车辆环境中鲁棒地检测行人。
-
行人跟踪:利用深度学习模型实现鲁棒的行人跟踪。首先,使用目标检测模型对初始帧进行行人检测,获取行人的位置信息。然后,为每个检测到的行人分配一个唯一的标识符,以便在后续帧中进行跟踪。接下来,构建一个深度学习模型,如基于循环神经网络(RNN)的模型(如LSTM、GRU等)或基于卷积神经网络的模型(如Siamese网络),用于学习行人的运动模式和外观特征。在每个新的帧中,利用行人的历史运动信息和外观特征,预测其在当前帧中的位置,并进行目标匹配和关联更新,以实现行人的连续跟踪。
-
数据关联与融合:将行人检测和跟踪的结果进行关联和融合,提高整体的准确性和鲁棒性。通过比对行人检测和跟踪结果之间的重叠度、外观相似度等指标,进行数据关联,将相匹配的检测和跟踪结果进行融合,以得到更准确的行人位置和轨迹信息。同时,还可以利用其他传感器数据(如激光雷达、雷达等)辅助行人的检测和跟踪,提供更全面的环境感知能力。
相关代码示例:
# 创建DeepSort实例
deepsort = DeepSort()
# 初始化目标列表
tracked_targets = []
# 处理每一帧图像
def process_frame(frame, detections):
# 使用DeepSort进行目标跟踪
targets = deepsort.update(frame, detections)
# 更新已跟踪目标列表
update_tracked_targets(targets)
# 绘制跟踪结果
draw_tracking_results(frame)
# 更新已跟踪目标列表
def update_tracked_targets(targets):
for target in targets:
target_id = target.id
target_position = target.position
target_velocity = target.velocity
# 根据目标ID检查是否已经跟踪
existing_target = get_tracked_target_by_id(target_id)
if existing_target is None:
# 创建新的跟踪目标
new_target = TrackedTarget(target_id, target_position, target_velocity)
tracked_targets.append(new_target)
else:
# 更新已有跟踪目标的位置和速度
existing_target.update_position(target_position)
existing_target.update_velocity(target_velocity)
# 获取已跟踪目标列表中的目标
def get_tracked_target_by_id(target_id):
for target in tracked_targets:
if target.id == target_id:
return target
return None
# 绘制跟踪结果
def draw_tracking_results(frame):
for target in tracked_targets:
target_id = target.id
target_position = target.position
# 在帧上绘制目标ID和位置
frame = draw_text(frame, target_id, target_position)
# 在帧上绘制目标边界框
frame = draw_bbox(frame, target.bbox)
# 显示帧图像
show_frame(frame)
海浪学长项目示例:
最后
我是海浪学长,创作不易,欢迎点赞、关注、收藏。
毕设帮助,疑难解答,欢迎打扰!