Review of Integration and Product Measures

Definitions, Propositions and Theorems

Simple Function

φ ( ω ) = ∑ i = 1 n a i 1 A i ( ω ) \varphi(\omega)=\sum_{i=1}^na_i1_{A_i}(\omega) φ(ω)=i=1nai1Ai(ω)
where A i A_i Ai are disjoint sets with finite measure μ ( A i ) < ∞ \mu(A_i)<\infty μ(Ai)<.

Proposition 1

Any measurable function f f f is the limit of a simple function sequence, i.e., f = lim ⁡ n φ n ( ω ) . f=\lim_{n}\varphi_n(\omega). f=limnφn(ω).

Bounded Convergence Theorem

If X n → X X_n\rightarrow X XnX in prob., ∣ X n ∣ < M , ∀ n |X_n|<M, \forall n Xn<M,n where M M M is a finite constant, then E [ X n ] → E [ X ] E[X_n]\rightarrow E[X] E[Xn]E[X].

Fatou’s Lemma

If X n ≥ 0 X_n\geq 0 Xn0, then
lim ⁡ inf ⁡ n E [ X n ] ≥ E [ lim ⁡ inf ⁡ n X n ] . \lim\inf_n E[X_n]\geq E[\lim\inf_n X_n]. limninfE[Xn]E[limninfXn].

(入不敷出)

Monotone Convergence Theorem

If 0 ≤ X n ↑ X 0\leq X_n\uparrow X 0XnX then E [ X n ] → E [ X ] E[X_n]\rightarrow E[X] E[Xn]E[X].

Dominated Convergence Theorem

If X n → X X_n\rightarrow X XnX a.s., X n < ∣ Y ∣ ∀ n X_n<|Y| \forall n Xn<Yn with E Y < ∞ EY<\infty EY<, then E [ X n ] → E [ X ] E[X_n]\rightarrow E[X] E[Xn]E[X].

BCT, Fatou, MCT and DCT are equivalent

In the sense that you can derive the other once you have one.

Pushforward Measure

Let f f f be a measurable mapping from ( Ω 1 , Σ 1 , μ ) (\Omega_1,\Sigma_1,\mu) (Ω1,Σ1,μ) to ( Ω 2 , Σ 2 ) (\Omega_2,\Sigma_2) (Ω2,Σ2). Define a measure μ ∘ f − 1 \mu\circ f^{-1} μf1 on ( Ω 2 , Σ 2 ) (\Omega_2,\Sigma_2) (Ω2,Σ2):
μ ∘ f − 1 ( E ) = μ ( f − 1 ( E ) ) , ∀ E ∈ Σ 2 . \mu\circ f^{-1}(E)=\mu(f^{-1}(E)), \forall E\in\Sigma_2. μf1(E)=μ(f1(E)),EΣ2. μ ∘ f − 1 \mu\circ f^{-1} μf1 is called the pushforward measure.

Change of variables formula

Assume that μ ∘ f − 1 \mu\circ f^{-1} μf1 is sigma-finite. Let φ \varphi φ be any measurable function of ( Ω 2 , Σ 2 ) (\Omega_2,\Sigma_2) (Ω2,Σ2), we have
∫ Ω 1 φ ( f ( ω ) ) μ ( d ω ) = ∫ Ω 2 φ ( ω ) μ ∘ f − 1 ( d ω ) . \int_{\Omega_1} \varphi(f(\omega))\mu(d\omega)=\int_{\Omega_2} \varphi(\omega)\mu\circ f^{-1}(d\omega). Ω1φ(f(ω))μ(dω)=Ω2φ(ω)μf1(dω).

Product Measure

Let ( Ω 1 , Σ 1 , μ 1 ) (\Omega_1,\Sigma_1,\mu_1) (Ω1,Σ1,μ1) and ( Ω 2 , Σ 2 , μ 2 ) (\Omega_2,\Sigma_2,\mu_2) (Ω2,Σ2,μ2) be two sigma-finite measure spaces. Define Ω = Ω 1 × Ω 2 = { ( x , y ) , x ∈ Ω 1 , y ∈ Ω 2 } \Omega=\Omega_1 \times \Omega_2=\{(x,y),x\in\Omega_1,y\in\Omega_2\} Ω=Ω1×Ω2={(x,y),xΩ1,yΩ2}, Σ = { A × B , A ∈ Σ 1 , B ∈ Σ 2 \Sigma=\{A\times B, A\in\Sigma_1, B\in\Sigma_2 Σ={A×B,AΣ1,BΣ2}. Let F = σ ( Σ ) \mathcal{F}=\sigma(\Sigma) F=σ(Σ). Then there is a unique measure μ \mu μ on F \mathcal{F} F with
μ ( A × B ) = μ 1 ( A ) μ 2 ( B ) . \mu(A\times B)=\mu_1(A)\mu_2(B). μ(A×B)=μ1(A)μ2(B). μ \mu μ is called product measure, denoted by μ 1 × μ 2 \mu_1\times\mu_2 μ1×μ2.

Fubini’s Theorem

Let f f f be a measurable function of ( Ω , F ) (\Omega,\mathcal{F}) (Ω,F). If f > 0 f>0 f>0 or f f f is integrable, then
∫ Ω 1 ∫ Ω 2 f ( x , y ) μ 2 ( d y ) μ 1 ( d x ) = ∫ Ω f d μ = ∫ Ω 2 ∫ Ω 1 f ( x , y ) μ 1 ( d x ) μ 2 ( d y ) . \int_{\Omega_1}\int_{\Omega_2}f(x,y)\mu_2(dy)\mu_1(dx)=\int_{\Omega}fd\mu=\int_{\Omega_2}\int_{\Omega_1}f(x,y)\mu_1(dx)\mu_2(dy). Ω1Ω2f(x,y)μ2(dy)μ1(dx)=Ωfdμ=Ω2Ω1f(x,y)μ1(dx)μ2(dy).

Reference

Durrett, Rick. Probability: theory and examples. Vol. 49. Cambridge university press, 2019.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值