ts10_Univariate TS模型_circle mark pAcf_ETS_unpack product_darts_bokeh band interval_ljungbox_AIC_BIC

本章介绍了如何使用指数平滑法和非季节性、季节性ARIMA模型预测单变量时间序列数据。通过Python实现,包括ACF和PACF图表绘制,检查残差的自相关,模型选择的AIC和BIC等。此外,还探讨了不同统计模型如简单指数平滑、趋势指数平滑、季节性指数平滑及其变种,并提供了不同时间序列数据的案例分析。
摘要由CSDN通过智能技术生成

     In https://blog.csdn.net/Linli522362242/article/details/127737895, Exploratory Data Analysis and Diagnosis, you were introduced to several concepts to help you understand the time series process. Such recipes included Decomposing time series data, Detecting time series stationarity, Applying power transformations, and Testing for autocorrelation in time series data. These techniques will come in handy in the statistical modeling approach that will be discussed in this chapter.

     When working with time series data, different methods and models can be used, dep

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值