【计算机视觉】python 基础图像处理

本文介绍了Python中的图像处理技术,包括利用PIL将图像转换为灰度并分析其直方图,展示了直方图均衡化如何增强图像细节,以及通过scipy.ndimage和opencv实现不同σ值的高斯模糊效果。
摘要由CSDN通过智能技术生成

1.图像轮廓及直方图

  这里用PIL的convert()方法将图像转换成灰度图像。图像的直方图用来表征图像像素值分布情况。用一定数目的小区间(bin)来指定表征像素值的范围,每个小区间会得到落入该小区间表示范围的像素数目。该灰度图像的直方图可以使用hist()函数来绘制。

from PIL import Image
from pylab import *
#读取图像到数组里
im=array(Image.open('me.jpg').convert('L'))
figure()
subplot(1,2 ,1)
gray()
contour(im,origin='image')
axis('equal')
axis('off')
subplot(1, 2, 2)
hist(im.flatten(),128)
show()

  图像轮廓及直方图,因为我选择的图像轮廓特征较多所以看上去比较杂乱。

2.直方图均衡化

代码如下 我这边是直接调用opencv中的直方图均衡化函数。

from PIL import Image
from pylab import *
import numpy as np
import cv2

img = array(Image.open('me.jpg').convert('L'))  # 打开图像,并转成灰度图像
img2 = cv2.equalizeHist(img)

figure()
subplot(2, 2, 1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值