面向遥感图像的小目标检测最新方法:FFCA-YOLO论文代码环境配置以及复现

1.简介      

        为了解决遥感小目标检测任务中特征表示不足、背景混淆等问题,本文基于YOLO框架进行改进,通过增加三个即插即用的模块:特征增强模块(FEM)、特征融合模块(FFM)和空间上下文感知模块(SCAM),显著增强了网络的局部感知能力、多尺度特征融合能力和跨通道、跨空间的全局关联能力,同时尽量避免增加复杂度。利用VEDAI和AI-TOD两个公共遥感小目标检测数据集和USOD一个自建数据集验证了FFCA-YOLO的有效性。

        本文重点在于讲述如何对该文章所提出的网络模型进行环境配置以及复现,需要复现代码的小伙伴之间看第四章即可。

2.论文地址

论文地址:FFCA-YOLO for Small Object Detection in Remote Sensing Images | IEEE Journals & Magazine | IEEE Xplore

代码地址:https://github.com/yemu1138178251/FFCA-YOLO

3.论文解读

3.1方法

        为了解决遥感小目标检测任务中特征表示不足、背景混淆等问题,本文基于YOLO框架进行改进,本文主要通过增加三个即插即用的模块:特征增强模块(FEM)、特征融合模块(FFM)和空间上下文感知模块(SCAM)来提高模型的检测精度。模型整体框架如下:

        可以看到,模型主要是根据yolov5框架进行改进,同时在其中加入了FEM(特征增强模块

评论 34
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

S_String

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值