1.简介
为了解决遥感小目标检测任务中特征表示不足、背景混淆等问题,本文基于YOLO框架进行改进,通过增加三个即插即用的模块:特征增强模块(FEM)、特征融合模块(FFM)和空间上下文感知模块(SCAM),显著增强了网络的局部感知能力、多尺度特征融合能力和跨通道、跨空间的全局关联能力,同时尽量避免增加复杂度。利用VEDAI和AI-TOD两个公共遥感小目标检测数据集和USOD一个自建数据集验证了FFCA-YOLO的有效性。
本文重点在于讲述如何对该文章所提出的网络模型进行环境配置以及复现,需要复现代码的小伙伴之间看第四章即可。
2.论文地址
代码地址:https://github.com/yemu1138178251/FFCA-YOLO
3.论文解读
3.1方法
为了解决遥感小目标检测任务中特征表示不足、背景混淆等问题,本文基于YOLO框架进行改进,本文主要通过增加三个即插即用的模块:特征增强模块(FEM)、特征融合模块(FFM)和空间上下文感知模块(SCAM)来提高模型的检测精度。模型整体框架如下:
可以看到,模型主要是根据yolov5框架进行改进,同时在其中加入了FEM(特征增强模块