LSCP: Locally Selective Combination in Parallel Outlier Ensembles-学习笔记

LSCP是一种异常检测方法,通过局部选择性组合多个基础检测器提升性能。它涉及训练基检测器、生成伪标签、定义局部空间以及模型选择与合并。LSCP利用Pearson相关性评估基模型在局部空间的性能,选择最佳模型。该方法适用于异常值与正常值分布明显的数据集,但在异常值交错或数据过于分散的情况下效果减弱。实验结果显示,LSCP在多个数据集上表现出优秀的异常检测性能。
摘要由CSDN通过智能技术生成

LSCP: Locally Selective Combination in Parallel Outlier Ensembles

  1. LSCP框架:

        1.训练多个基础异常检测器(Base Detector Generation);

        2.生成伪标签用于评估(Pseudo Ground Truth);

        3.对于每个测试点生成局部空间,也就是近邻(Local Region Definition);

        4.模型选择与合并(Model Selection and Combination),即对所有的基模型在找到的局部空间上用生产的伪标签进行评估,和伪标签在局部空间上Pearson大的被选做最终输出模型。

 

  1. 异常检测(离群值检测)是一种重要的数据挖掘方法,可以找到与“主要数据分布”不同的异常值。
  2. 异常检测有三个特点:1无监督:一般没有标签可用;2极端的数据不平衡:异常点往往远少于正常点;3复杂的模式。
  3. 绝大部分的异常检测集成都是并行式的。
  4. LSCP(Locally Selective Combination in Parallel Outlier Ensembles)通过强调数据局部性来选择性地组合基本检测器。
  5. 结合/融合/整合 (integration/ combination/ fusion)多个机器学习模型往往可以提高整体的预测能力。
  6. 动态分类器选择(DCS)是一个用于分类任务的已建立组合框架。
  7. LSCP改进了局部区域定义过程,以实现更稳定的组合机制。
  8. LSCP从一组要组合的检测器开始。对于每个测试实例,LSCP首先定义其局部区域,然后选择功能最强的局部检测器。所选检测器用于生成测试实例的离群值。

  1. 基于论文中的可视化分析,可以假设,当离群对象和正常对象被很好地分离时,LSCP是有用的,但是当它们被交错,数据因为异常过于分散,没有形成局部特征时,LSCP的效果会降低。当假设有少量异常值时,较小的局部
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值